SimCSE / app.py
Ahsen Khaliq
Update app.py
04a7a46
import torch
from scipy.spatial.distance import cosine
from transformers import AutoModel, AutoTokenizer
import gradio as gr
# Import our models. The package will take care of downloading the models automatically
tokenizer = AutoTokenizer.from_pretrained("princeton-nlp/sup-simcse-bert-base-uncased")
model = AutoModel.from_pretrained("princeton-nlp/sup-simcse-bert-base-uncased")
def simcse(text1, text2, text3):
# Tokenize input texts
texts = [
text1,
text2,
text3
]
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
# Get the embeddings
with torch.no_grad():
embeddings = model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
# Calculate cosine similarities
# Cosine similarities are in [-1, 1]. Higher means more similar
cosine_sim_0_1 = 1 - cosine(embeddings[0], embeddings[1])
cosine_sim_0_2 = 1 - cosine(embeddings[0], embeddings[2])
return {"cosine similarity":cosine_sim_0_1}, {"cosine similarity":cosine_sim_0_2}
inputs = [
gr.inputs.Textbox(lines=5, label="Input Text One"),
gr.inputs.Textbox(lines=5, label="Input Text Two"),
gr.inputs.Textbox(lines=5, label="Input Text Three")
]
outputs = [
gr.outputs.Label(type="confidences",label="Cosine similarity between text one and two"),
gr.outputs.Label(type="confidences", label="Cosine similarity between text one and three")
]
title = "SimCSE"
description = "demo for Princeton-NLP SimCSE. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.08821'>SimCSE: Simple Contrastive Learning of Sentence Embeddings</a> | <a href='https://github.com/princeton-nlp/SimCSE'>Github Repo</a></p>"
examples = [
["There's a kid on a skateboard.",
"A kid is skateboarding.",
"A kid is inside the house."]
]
gr.Interface(simcse, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()