File size: 10,484 Bytes
035e10c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy as np
import os
import sys
import ntpath
import time
from . import util, html
from subprocess import Popen, PIPE


if sys.version_info[0] == 2:
    VisdomExceptionBase = Exception
else:
    VisdomExceptionBase = ConnectionError


def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256):
    """Save images to the disk.

    Parameters:
        webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details)
        visuals (OrderedDict)    -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs
        image_path (str)         -- the string is used to create image paths
        aspect_ratio (float)     -- the aspect ratio of saved images
        width (int)              -- the images will be resized to width x width

    This function will save images stored in 'visuals' to the HTML file specified by 'webpage'.
    """
    image_dir = webpage.get_image_dir()
    short_path = ntpath.basename(image_path[0])
    name = os.path.splitext(short_path)[0]

    webpage.add_header(name)
    ims, txts, links = [], [], []

    for label, im_data in visuals.items():
        im = util.tensor2im(im_data)
        image_name = '%s_%s.png' % (name, label)
        save_path = os.path.join(image_dir, image_name)
        util.save_image(im, save_path, aspect_ratio=aspect_ratio)
        ims.append(image_name)
        txts.append(label)
        links.append(image_name)
    webpage.add_images(ims, txts, links, width=width)


class Visualizer:
    """This class includes several functions that can display/save images and print/save logging information.

    It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating
    HTML files with images.
    """

    def __init__(self, opt):
        """Initialize the Visualizer class

        Parameters:
            opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
        Step 1: Cache the training/test options
        Step 2: connect to a visdom server
        Step 3: create an HTML object for saveing HTML filters
        Step 4: create a logging file to store training losses
        """
        self.opt = opt  # cache the option
        self.display_id = opt.display_id
        self.use_html = opt.isTrain and not opt.no_html
        self.win_size = opt.display_winsize
        self.name = opt.name
        self.port = opt.display_port
        self.saved = False
        if self.display_id > 0:  # connect to a visdom server given <display_port> and <display_server>
            import visdom
            self.ncols = opt.display_ncols
            self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env)
            if not self.vis.check_connection():
                self.create_visdom_connections()

        if self.use_html:  # create an HTML object at <checkpoints_dir>/web/; images will be saved under
            # <checkpoints_dir>/web/images/
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])
        # create a logging file to store training losses
        self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
        with open(self.log_name, "a") as log_file:
            now = time.strftime("%c")
            log_file.write('================ Training Loss (%s) ================\n' % now)

    def reset(self):
        """Reset the self.saved status"""
        self.saved = False

    def create_visdom_connections(self):
        """If the program could not connect to Visdom server, this function will start a new server at port <
        self.port > """
        cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port
        print('\n\nCould not connect to Visdom server. \n Trying to start a server....')
        print('Command: %s' % cmd)
        Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)

    def display_current_results(self, visuals, epoch, save_result):
        """Display current results on visdom; save current results to an HTML file.

        Parameters:
            visuals (OrderedDict) - - dictionary of images to display or save
            epoch (int) - - the current epoch
            save_result (bool) - - if save the current results to an HTML file
        """
        if self.display_id > 0:  # show images in the browser using visdom
            ncols = self.ncols
            if ncols > 0:        # show all the images in one visdom panel
                ncols = min(ncols, len(visuals))
                h, w = next(iter(visuals.values())).shape[:2]
                table_css = """<style>
                        table {border-collapse: separate; border-spacing: 4px; white-space: nowrap; text-align: center}
                        table td {width: % dpx; height: % dpx; padding: 4px; outline: 4px solid black}
                        </style>""" % (w, h)  # create a table css
                # create a table of images.
                title = self.name
                label_html = ''
                label_html_row = ''
                images = []
                idx = 0
                for label, image in visuals.items():
                    image_numpy = util.tensor2im(image)
                    label_html_row += '<td>%s</td>' % label
                    images.append(image_numpy.transpose([2, 0, 1]))
                    idx += 1
                    if idx % ncols == 0:
                        label_html += '<tr>%s</tr>' % label_html_row
                        label_html_row = ''
                white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255
                while idx % ncols != 0:
                    images.append(white_image)
                    label_html_row += '<td></td>'
                    idx += 1
                if label_html_row != '':
                    label_html += '<tr>%s</tr>' % label_html_row
                try:
                    self.vis.images(images, nrow=ncols, win=self.display_id + 1,
                                    padding=2, opts=dict(title=title + ' images'))
                    label_html = '<table>%s</table>' % label_html
                    self.vis.text(table_css + label_html, win=self.display_id + 2,
                                  opts=dict(title=title + ' labels'))
                except VisdomExceptionBase:
                    self.create_visdom_connections()

            else:     # show each image in a separate visdom panel;
                idx = 1
                try:
                    for label, image in visuals.items():
                        image_numpy = util.tensor2im(image)
                        self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label),
                                       win=self.display_id + idx)
                        idx += 1
                except VisdomExceptionBase:
                    self.create_visdom_connections()

        if self.use_html and (save_result or not self.saved):  # save images to an HTML file if they haven't been saved.
            self.saved = True
            # save images to the disk
            for label, image in visuals.items():
                image_numpy = util.tensor2im(image)
                img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label))
                util.save_image(image_numpy, img_path)

            # update website
            webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1)
            for n in range(epoch, 0, -1):
                webpage.add_header('epoch [%d]' % n)
                ims, txts, links = [], [], []

                for label, image_numpy in visuals.items():
                    image_numpy = util.tensor2im(image)
                    img_path = 'epoch%.3d_%s.png' % (n, label)
                    ims.append(img_path)
                    txts.append(label)
                    links.append(img_path)
                webpage.add_images(ims, txts, links, width=self.win_size)
            webpage.save()

    def plot_current_losses(self, epoch, counter_ratio, losses):
        """display the current losses on visdom display: dictionary of error labels and values

        Parameters:
            epoch (int)           -- current epoch
            counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1
            losses (OrderedDict)  -- training losses stored in the format of (name, float) pairs
        """
        if not hasattr(self, 'plot_data'):
            self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())}
        self.plot_data['X'].append(epoch + counter_ratio)
        self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']])
        try:
            self.vis.line(
                X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1),
                Y=np.array(self.plot_data['Y']),
                opts={
                    'title': self.name + ' loss over time',
                    'legend': self.plot_data['legend'],
                    'xlabel': 'epoch',
                    'ylabel': 'loss'},
                win=self.display_id)
        except VisdomExceptionBase:
            self.create_visdom_connections()

    # losses: same format as |losses| of plot_current_losses
    def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
        """print current losses on console; also save the losses to the disk

        Parameters:
            epoch (int) -- current epoch
            iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
            losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
            t_comp (float) -- computational time per data point (normalized by batch_size)
            t_data (float) -- data loading time per data point (normalized by batch_size)
        """
        message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data)
        for k, v in losses.items():
            message += '%s: %.3f ' % (k, v)

        print(message)  # print the message
        with open(self.log_name, "a") as log_file:
            log_file.write('%s\n' % message)  # save the message