File size: 955 Bytes
25e4693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr
import CaptchaCracker as cc


# Target image data size
img_width = 200
img_height = 50
# Target image label length
max_length = 6
# Target image label component
characters = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'}

# Model weight file path
weights_path = "weights.h5"
# Creating a model application instance
AM = cc.ApplyModel(weights_path, img_width, img_height, max_length, characters)

def inference(target_img_path):
  # Predicted value
  pred = AM.predict(target_img_path)
  return pred
  


block = gr.Blocks()

with block:
    gr.Markdown("Gradio Demo for WooilJeong/CaptchaCracker")
    
    with gr.Tabs():
        with gr.TabItem("CaptchaCracker"):
            with gr.Row():
                captchaimg = gr.inputs.Image(type="filepath")
                text = gr.outputs.Textbox()
            catch_run = gr.Button("Run")
            catch_run.click(inference, inputs=captchaimg, outputs=text)
    
block.launch()