Spaces:
Running
on
Zero
Running
on
Zero
#import subprocess | |
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import gradio as gr | |
from threading import Thread | |
device = "auto" | |
model_id = "ibm-granite/granite-3.0-8b-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# drop device_map if running on CPU | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device) | |
model.eval() | |
# change input text as desired | |
TITLE = "<h1><center>ibm-granite/granite-3.0-8b-instruct Chat webui</center></h1>" | |
DESCRIPTION = """ | |
<h3>MODEL: <a href="https://huggingface.co/ibm-granite/granite-3.0-8b-instruct">ibm-granite/granite-3.0-8b-instruct</a></h3> | |
<center> | |
<p>This model is designed for conversational interactions.</p> | |
</center> | |
""" | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
} | |
.chatbox .messages .message.user { | |
background-color: #e1f5fe; | |
} | |
.chatbox .messages .message.bot { | |
background-color: #eeeeee; | |
} | |
""" | |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float): | |
print(f'Message: {message}') | |
print(f'History: {history}') | |
conversation = [] | |
for prompt, answer in history: | |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=penalty, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
eos_token_id=[2], | |
) | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
chatbot = gr.Chatbot(height=500) | |
with gr.Blocks(css=CSS) as demo: | |
gr.HTML(TITLE) | |
gr.HTML(DESCRIPTION) | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
theme="soft", | |
retry_btn=None, | |
undo_btn="Delete Previous", | |
clear_btn="Clear", | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=1024, | |
label="Max new tokens", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.8, | |
label="top_p", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=20, | |
label="top_k", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.2, | |
label="Repetition penalty", | |
render=False, | |
), | |
], | |
examples=[ | |
["Explain Deep Learning as a pirate."], | |
["Give me five ideas for a child's summer science project."], | |
["Provide advice for writing a script for a puzzle game."], | |
["Create a tutorial for building a breakout game using markdown."], | |
["超能力を持つ主人公のSF物語のシナリオを考えてください。伏線の設定、テーマやログラインを理論的に使用してください"], | |
["子供の夏休みの自由研究のための、5つのアイデアと、その手法を簡潔に教えてください。"], | |
["パズルゲームのスクリプト作成のためにアドバイスお願いします"], | |
["マークダウン記法にて、ブロック崩しのゲーム作成の教科書作成してください"], | |
["お笑いのトンチ大会のお題を考えてください"], | |
["日本語の慣用句、ことわざについての試験問題を考えてください"], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |