|
import random |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import spaces |
|
from diffusers import FluxPipeline |
|
from PIL import Image |
|
from diffusers.utils import export_to_gif |
|
from transformers import pipeline |
|
|
|
HEIGHT = 256 |
|
WIDTH = 1024 |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = FluxPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", |
|
torch_dtype=torch.bfloat16 |
|
).to(device) |
|
|
|
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") |
|
|
|
def split_image(input_image, num_splits=4): |
|
output_images = [] |
|
for i in range(num_splits): |
|
left = i * 256 |
|
right = (i + 1) * 256 |
|
box = (left, 0, right, 256) |
|
output_images.append(input_image.crop(box)) |
|
return output_images |
|
|
|
def translate_to_english(text): |
|
return translator(text)[0]['translation_text'] |
|
|
|
@spaces.GPU() |
|
def predict(prompt, seed=42, randomize_seed=False, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): |
|
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt): |
|
prompt = translate_to_english(prompt) |
|
|
|
prompt_template = f""" |
|
A side by side 4 frame image showing consecutive stills from a looped gif moving from left to right. The gif is of {prompt}. |
|
""" |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
image = pipe( |
|
prompt=prompt_template, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=1, |
|
generator=torch.Generator("cpu").manual_seed(seed), |
|
height=HEIGHT, |
|
width=WIDTH |
|
).images[0] |
|
|
|
return export_to_gif(split_image(image, 4), "flux.gif", fps=4), image, seed |
|
|
|
css = """ |
|
footer { visibility: hidden;} |
|
""" |
|
|
|
examples = [ |
|
"๊ณ ์์ด๊ฐ ๊ณต์ค์์ ๋ฐ์ ํ๋๋ ๋ชจ์ต", |
|
"ํฌ๋๊ฐ ์๋ฉ์ด๋ฅผ ์ข์ฐ๋ก ํ๋๋ ๋ชจ์ต", |
|
"๊ฝ์ด ํผ์ด๋๋ ๊ณผ์ " |
|
] |
|
|
|
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
with gr.Row(): |
|
prompt = gr.Text(label="ํ๋กฌํํธ", show_label=False, max_lines=1, placeholder="ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์") |
|
submit = gr.Button("์ ์ถ", scale=0) |
|
output = gr.Image(label="GIF", show_label=False) |
|
output_stills = gr.Image(label="์คํธ ์ด๋ฏธ์ง", show_label=False, elem_id="stills") |
|
|
|
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False): |
|
seed = gr.Slider( |
|
label="์๋", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="์๋ ๋ฌด์์ํ", value=True) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="๊ฐ์ด๋์ค ์ค์ผ์ผ", |
|
minimum=1, |
|
maximum=15, |
|
step=0.1, |
|
value=3.5, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="์ถ๋ก ๋จ๊ณ ์", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
fn=predict, |
|
inputs=[prompt], |
|
outputs=[output, output_stills, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[submit.click, prompt.submit], |
|
fn=predict, |
|
inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps], |
|
outputs=[output, output_stills, seed] |
|
) |
|
|
|
demo.launch() |