Spaces:
Runtime error
Runtime error
Yeonchan Ahn
commited on
Commit
β’
d23aa66
1
Parent(s):
3a9ccca
first test
Browse files- app.py +7 -0
- cossim.py +73 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("ahnyeonchan/cosine_sim_btw_embeddings_of_same_semantics")
|
6 |
+
|
7 |
+
launch_gradio_widget(module)
|
cossim.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import evaluate
|
3 |
+
from typing import List, Union
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.nn as nn
|
8 |
+
_DESCRIPTION = """
|
9 |
+
Cosine similarity between two pairs of embeddings where each embedding represents the semantics of object .
|
10 |
+
|
11 |
+
"""
|
12 |
+
|
13 |
+
_KWARGS_DESCRIPTION = """
|
14 |
+
Args:
|
15 |
+
predictions (`list` of a list of `int`): a group of embeddings
|
16 |
+
references (`list` of `int`): the other group of embeddings paired with the predictions
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
cos_similarity ("float") : average cosine similarity between two pairs of embeddings
|
20 |
+
|
21 |
+
Examples:
|
22 |
+
|
23 |
+
Example 1-A simple example
|
24 |
+
>>> cos_similarity_metrics = evaluate.load("ahnyeonchan/cosine_sim_btw_embeddings_of_same_semantics")
|
25 |
+
>>> results = accuracy_metric.compute(references=[[1.0, 1.0], [0.0, 1.0]], predictions=[[1.0, 1.0], [0.0, 1.0]])
|
26 |
+
>>> print(results)
|
27 |
+
{'cos_similarity': 1.0}
|
28 |
+
"""
|
29 |
+
|
30 |
+
_CITATION = """"""
|
31 |
+
|
32 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
33 |
+
class CosSim(evaluate.Metric):
|
34 |
+
def __init__(self, *args, **kwargs):
|
35 |
+
super(CosSim, self).__init__(*args, **kwargs)
|
36 |
+
self.cossim = nn.CosineSimilarity()
|
37 |
+
|
38 |
+
def _info(self):
|
39 |
+
return evaluate.MetricInfo(
|
40 |
+
description=_DESCRIPTION,
|
41 |
+
citation=_CITATION,
|
42 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
43 |
+
features=datasets.Features(
|
44 |
+
{
|
45 |
+
"predictions": datasets.Sequence(datasets.Value("float32")),
|
46 |
+
"references": datasets.Sequence(datasets.Value("float32")),
|
47 |
+
}
|
48 |
+
),
|
49 |
+
reference_urls=[],
|
50 |
+
)
|
51 |
+
|
52 |
+
def _compute(self, predictions: List[List], references: List[List]):
|
53 |
+
|
54 |
+
if isinstance(predictions, torch.Tensor):
|
55 |
+
predictions = torch.Tensor(predictions)
|
56 |
+
elif isinstance(predictions, list):
|
57 |
+
predictions = torch.Tensor(predictions)
|
58 |
+
else:
|
59 |
+
raise NotImplementedError()
|
60 |
+
|
61 |
+
if isinstance(references, torch.Tensor):
|
62 |
+
references = torch.Tensor(references)
|
63 |
+
elif isinstance(references, list):
|
64 |
+
references = torch.Tensor(references)
|
65 |
+
else:
|
66 |
+
raise NotImplementedError()
|
67 |
+
|
68 |
+
cosims = self.cossim(predictions, references)
|
69 |
+
val = torch.mean(cossim).item()
|
70 |
+
|
71 |
+
return {
|
72 |
+
"cos_similarity": float(val)
|
73 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
torch
|