ahmedfaiyaz commited on
Commit
396d9d8
1 Parent(s): 5629976

added zero gpu support

Browse files
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -2,6 +2,7 @@ from diffusers import DiffusionPipeline
2
  from typing import List, Optional, Tuple, Union
3
  import torch
4
  import gradio as gr
 
5
  css="""
6
  #input-panel{
7
  align-items:center;
@@ -443,13 +444,13 @@ character_mappings_model_wise={
443
  }
444
 
445
 
446
-
447
  def generate(modelname:str,input_text:str,batch_size:int,inference_steps:int):
448
  batch_size=int(batch_size)
449
  inference_steps=int(inference_steps)
450
  print(f"Generating image with label:{character_mappings_model_wise[current_model][input_text]} batch size:{batch_size}")
451
  label=int(character_mappings_model_wise[current_model][input_text])
452
- pipeline.embedding=torch.tensor([label],device="cpu") #running on free tier
453
  generate_image=pipeline(batch_size=batch_size,num_inference_steps=inference_steps).images
454
  return generate_image
455
 
@@ -457,6 +458,8 @@ def generate(modelname:str,input_text:str,batch_size:int,inference_steps:int):
457
  def switch_pipeline(modelname:str):
458
  global pipeline
459
  pipeline = DiffusionPipeline.from_pretrained(modelname,custom_pipeline="ahmedfaiyaz/OkkhorDiffusion",embedding=torch.int16)
 
 
460
  global current_model
461
  current_model=modelname
462
  return f"""
 
2
  from typing import List, Optional, Tuple, Union
3
  import torch
4
  import gradio as gr
5
+ import spaces
6
  css="""
7
  #input-panel{
8
  align-items:center;
 
444
  }
445
 
446
 
447
+ @spaces.GPU
448
  def generate(modelname:str,input_text:str,batch_size:int,inference_steps:int):
449
  batch_size=int(batch_size)
450
  inference_steps=int(inference_steps)
451
  print(f"Generating image with label:{character_mappings_model_wise[current_model][input_text]} batch size:{batch_size}")
452
  label=int(character_mappings_model_wise[current_model][input_text])
453
+ pipeline.embedding=torch.tensor([label],device="cuda") #testing zero gpu
454
  generate_image=pipeline(batch_size=batch_size,num_inference_steps=inference_steps).images
455
  return generate_image
456
 
 
458
  def switch_pipeline(modelname:str):
459
  global pipeline
460
  pipeline = DiffusionPipeline.from_pretrained(modelname,custom_pipeline="ahmedfaiyaz/OkkhorDiffusion",embedding=torch.int16)
461
+ pipeline.to('cuda')
462
+
463
  global current_model
464
  current_model=modelname
465
  return f"""