OkkhorDiffusion / app.py
Ahmed Faiyaz
Create app.py
6654167
raw
history blame
3.45 kB
from diffusers import DiffusionPipeline
from typing import List, Optional, Tuple, Union
import torch
import gradio as gr
css="""
#input-panel{
align-items:center;
justify-content:center
}
"""
pipeline = DiffusionPipeline.from_pretrained("gr33nr1ng3r/OkkhorDiffusion",custom_pipeline="gr33nr1ng3r/OkkhorDiffusion",embedding=torch.float16)
character_mappings = {
'অ': 1,
'আ': 2,
'ই': 3,
'ঈ': 4,
'উ': 5,
'ঊ': 6,
'ঋ': 7,
'এ': 8,
'ঐ': 9,
'ও': 10,
'ঔ': 11,
'ক': 12,
'খ': 13,
'গ': 14,
'ঘ': 15,
'ঙ': 16,
'চ': 17,
'ছ': 18,
'জ': 19,
'ঝ': 20,
'ঞ': 21,
'ট': 22,
'ঠ': 23,
'ড': 24,
'ঢ': 25,
'ণ': 26,
'ত': 27,
'থ': 28,
'দ': 29,
'ধ': 30,
'ন': 31,
'প': 32,
'ফ': 33,
'ব': 34,
'ভ': 35,
'ম': 36,
'য': 37,
'র': 38,
'ল': 39,
'শ': 40,
'ষ': 41,
'স': 42,
'হ': 43,
'ড়': 44,
'ঢ়': 45,
'য়': 46,
'ৎ': 47,
'ং': 48,
'ঃ': 49,
'ঁ': 50,
'০': 51,
'১': 52,
'২': 53,
'৩': 54,
'৪': 55,
'৫': 56,
'৬': 57,
'৭': 58,
'৮': 59,
'৯': 60,
'ক্ষ(ksa)': 61,
'ব্দ(bda)': 62,
'ঙ্গ': 63,
'স্ক': 64,
'স্ফ': 65,
'স্থ': 66,
'চ্ছ': 67,
'ক্ত': 68,
'স্ন': 69,
'ষ্ণ': 70,
'ম্প': 71,
'হ্ম': 72,
'প্ত': 73,
'ম্ব': 74,
'ন্ড': 75,
'দ্ভ': 76,
'ত্থ': 77,
'ষ্ঠ': 78,
'ল্প': 79,
'ষ্প': 80,
'ন্দ': 81,
'ন্ধ': 82,
'ম্ম': 83,
'ন্ঠ': 84,
}
def generate(input_text:str,batch_size:int,inference_steps:int):
batch_size=int(batch_size)
inference_steps=int(inference_steps)
print(f"Generating image with label:{character_mappings[input_text]} batch size:{batch_size}")
label=int(character_mappings[input_text])
pipeline.embedding=torch.tensor([label])
generate_image=pipeline(batch_size=batch_size,num_inference_steps=inference_steps).images
return generate_image
with gr.Blocks(css=css,elem_id="panel") as od_app:
with gr.Column(min_width=100):
text=gr.HTML("""
<div style="text-align: center; margin: 0 auto;">
<div style="display: inline-flex;align-items: center;gap: 0.8rem;font-size: 1.75rem;">
<h1> Okkhor Diffusion </h1>
</div>
</div>
""")
#input panel
with gr.Row(elem_id="input-panel"):
with gr.Column(variant="panel",scale=0,elem_id="input-panel-items"):
dropdown = gr.Dropdown(label="Select Character",choices=list(character_mappings.keys()))
batch_size = gr.Number(label="Batch Size", minimum=0, maximum=100)
inference_steps= gr.Slider(label="Steps",value=100,minimum=100,maximum=1000,step=100)
btn = gr.Button("Generate",size="sm")
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
, columns=[10], rows=[10], object_fit="contain", height="auto",scale=1,min_width=80)
btn.click(fn=generate,inputs=[dropdown,batch_size,inference_steps],outputs=[gallery])
if __name__=='__main__':
od_app.queue(max_size=20).launch(show_error=True)