Spaces:
Sleeping
Sleeping
File size: 3,481 Bytes
6654167 e611034 5939e59 6654167 54b8702 6654167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
from diffusers import DiffusionPipeline
from typing import List, Optional, Tuple, Union
import torch
import gradio as gr
css="""
#input-panel{
align-items:center;
justify-content:center
}
"""
#updated username
pipeline = DiffusionPipeline.from_pretrained("ahmedfaiyaz/OkkhorDiffusion",custom_pipeline="gr33nr1ng3r/OkkhorDiffusion",embedding=torch.float16)
character_mappings = {
'অ': 1,
'আ': 2,
'ই': 3,
'ঈ': 4,
'উ': 5,
'ঊ': 6,
'ঋ': 7,
'এ': 8,
'ঐ': 9,
'ও': 10,
'ঔ': 11,
'ক': 12,
'খ': 13,
'গ': 14,
'ঘ': 15,
'ঙ': 16,
'চ': 17,
'ছ': 18,
'জ': 19,
'ঝ': 20,
'ঞ': 21,
'ট': 22,
'ঠ': 23,
'ড': 24,
'ঢ': 25,
'ণ': 26,
'ত': 27,
'থ': 28,
'দ': 29,
'ধ': 30,
'ন': 31,
'প': 32,
'ফ': 33,
'ব': 34,
'ভ': 35,
'ম': 36,
'য': 37,
'র': 38,
'ল': 39,
'শ': 40,
'ষ': 41,
'স': 42,
'হ': 43,
'ড়': 44,
'ঢ়': 45,
'য়': 46,
'ৎ': 47,
'ং': 48,
'ঃ': 49,
'ঁ': 50,
'০': 51,
'১': 52,
'২': 53,
'৩': 54,
'৪': 55,
'৫': 56,
'৬': 57,
'৭': 58,
'৮': 59,
'৯': 60,
'ক্ষ(ksa)': 61,
'ব্দ(bda)': 62,
'ঙ্গ': 63,
'স্ক': 64,
'স্ফ': 65,
'স্থ': 66,
'চ্ছ': 67,
'ক্ত': 68,
'স্ন': 69,
'ষ্ণ': 70,
'ম্প': 71,
'হ্ম': 72,
'প্ত': 73,
'ম্ব': 74,
'ন্ড': 75,
'দ্ভ': 76,
'ত্থ': 77,
'ষ্ঠ': 78,
'ল্প': 79,
'ষ্প': 80,
'ন্দ': 81,
'ন্ধ': 82,
'ম্ম': 83,
'ন্ঠ': 84,
}
def generate(input_text:str,batch_size:int,inference_steps:int):
batch_size=int(batch_size)
inference_steps=int(inference_steps)
print(f"Generating image with label:{character_mappings[input_text]} batch size:{batch_size}")
label=int(character_mappings[input_text])
label-=1
pipeline.embedding=torch.tensor([label])
generate_image=pipeline(batch_size=batch_size,num_inference_steps=inference_steps).images
return generate_image
with gr.Blocks(css=css,elem_id="panel") as od_app:
with gr.Column(min_width=100):
text=gr.HTML("""
<div style="text-align: center; margin: 0 auto;">
<div style="display: inline-flex;align-items: center;gap: 0.8rem;font-size: 1.75rem;">
<h1> Okkhor Diffusion </h1>
</div>
</div>
""")
#input panel
with gr.Row(elem_id="input-panel"):
with gr.Column(variant="panel",scale=0,elem_id="input-panel-items"):
dropdown = gr.Dropdown(label="Select Character",choices=list(character_mappings.keys()))
batch_size = gr.Number(label="Batch Size", minimum=0, maximum=100)
inference_steps= gr.Slider(label="Steps",value=100,minimum=100,maximum=1000,step=100)
btn = gr.Button("Generate",size="sm")
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
, columns=[10], rows=[10], object_fit="contain", height="auto",scale=1,min_width=80)
btn.click(fn=generate,inputs=[dropdown,batch_size,inference_steps],outputs=[gallery])
if __name__=='__main__':
od_app.queue(max_size=20).launch(show_error=True)
|