voice_clone_v2 / app.py
ahassoun's picture
Update app.py
8ab15de
raw
history blame
8.04 kB
from TTS.api import TTS
import gradio as gr
from gradio import Dropdown
from scipy.io.wavfile import write
import os
import shutil
import re
user_choice = ""
MAX_NUMBER_SENTENCES = 10
file_upload_available = os.environ.get("ALLOW_FILE_UPLOAD")
script_choices = {
"Mayor of Toronto": {
"Positive": "I am very pleased with the progress being made to finish the cross-town transit line. This has been an excellent use of taxpayer dollars.",
"Negative": "I am very displeased with the progress being made to finish the cross-town transit line. This has been an embarrassing use of taxpayer dollars.",
"Random": "I like being Mayor because I don’t have to pay my parking tickets."
},
"Witness": {
"Positive": "Yes, John is my friend. He was at my house watching the baseball game all night.",
"Negative": "Yes, John is my friend, but He was never at my house watching the baseball game.",
"Random": "He is my friend, but I do not trust John."
},
"Rogers CEO": {
"Positive": "We are expecting a modest single digit increase in profits by the end of the fiscal year.",
"Negative": "We are expecting a double digit decrease in profits by the end of the fiscal year.",
"Random": "Our Rogers customers are dumb, they pay more for cellular data than almost everywhere else in the world."
},
"Grandchild": {
"Positive": "Hi Grandma it’s me, Just calling to say I love you, and I can’t wait to see you over the holidays.",
"Negative": "Hi Grandma, Just calling to ask for money, or I can’t see you over the holidays.",
"Random": "Grandma, I can’t find your email address. I need to send you something important."
}
}
tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True)
def infer(prompt, input_wav_file, script_type,selected_theme):
print("Prompt:", prompt)
print("Input WAV File:", input_wav_file)
print("Script Type:", script_type)
print(selected_theme)
print("""
—————
NEW INFERENCE:
———————
""")
if prompt == "":
gr.Warning("Do not forget to provide a tts prompt !")
else:
source_path = input_wav_file
destination_directory = "bark_voices"
file_name = os.path.splitext(os.path.basename(source_path))[0]
destination_path = os.path.join(destination_directory, file_name)
os.makedirs(destination_path, exist_ok=True)
shutil.move(source_path, os.path.join(
destination_path, f"{file_name}.wav"))
sentences = re.split(r'(?<=[.!?])\s+', prompt)
if len(sentences) > MAX_NUMBER_SENTENCES:
gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)")
first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
limited_prompt = ' '.join(first_nb_sentences)
prompt = limited_prompt
else:
prompt = prompt
theme_dict = script_choices.get(selected_theme, {})
chosen_script = theme_dict.get(script_type, "")
gr.Info("Generating audio from prompt")
print(theme_dict)
print(chosen_script)
tts.tts_to_file(text=chosen_script,
file_path="output.wav",
voice_dir="bark_voices/",
speaker=f"{file_name}")
contents = os.listdir(f"bark_voices/{file_name}")
for item in contents:
print(item)
print("Preparing final waveform video ...")
tts_video = gr.make_waveform(audio="output.wav")
print(tts_video)
print("FINISHED")
return "output.wav", tts_video, gr.update(value=f"bark_voices/{file_name}/{contents[1]}", visible=True), gr.Group.update(visible=True), destination_path
# s
theme_emojis = {
"Mayor of Toronto": "🏙️",
"Witness": "👤",
"Rogers CEO": "📱",
"Grandchild": "👪"
}
css = """
#col-container {max-width: 780px; margin-left: auto; margin-right: auto; background-size: contain; background-repeat: no-repeat;}
#theme-emoji-bg {position: absolute; top: 0; left: 0; width: 100%; height: 100%; z-index: -1; opacity: 0.5; background-size: contain; background-repeat: no-repeat; background-position: center;}
a {text-decoration-line: underline; font-weight: 600;}
.mic-wrap > button {
width: 100%;
height: 60px;
font-size: 1.4em!important;
}
.record-icon.svelte-1thnwz {
display: flex;
position: relative;
margin-right: var(--size-2);
width: unset;
height: unset;
}
span.record-icon > span.dot.svelte-1thnwz {
width: 20px!important;
height: 20px!important;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#theme-emoji {
position: absolute;
top: 10px;
right: 10px;
}
"""
def load_hidden_mic(audio_in):
print("USER RECORDED A NEW SAMPLE")
return audio_in
def update_script_text(theme, script_type):
positive_script = script_choices.get(theme, {}).get("Positive", "")
output_script = script_choices.get(theme, {}).get(script_type, "")
theme_emoji = theme_emojis.get(theme, "")
return positive_script, output_script, theme_emoji, theme # Include theme as an output
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
theme_emoji_output = gr.Label(label="Theme Emoji")
theme_dropdown = gr.Dropdown(
label="1. Select a Theme", choices=list(script_choices.keys()))
script_text = gr.Textbox(
label="2 & 3. Read the script below aloud THREE times for the best output:",
lines=5,
)
script_type_dropdown = gr.Dropdown(
label="4. Select the Script Type for Bot Output", choices=["Random", "Negative"])
output_script_text = gr.Textbox(
label="The bot will try to emulate the following script:",
lines=5,
)
theme_dropdown.change(fn=update_script_text, inputs=[
theme_dropdown, script_type_dropdown], outputs=[script_text, output_script_text, theme_emoji_output])
script_type_dropdown.change(fn=update_script_text, inputs=[
theme_dropdown, script_type_dropdown], outputs=[script_text, output_script_text, theme_emoji_output])
theme_dropdown.change(fn=update_script_text, inputs=[theme_dropdown, script_type_dropdown], outputs=[
script_text, output_script_text, theme_emoji_output])
# Replace file input with microphone input
micro_in = gr.Audio(
label="Record voice to clone",
type="filepath",
source="microphone",
interactive=True
)
hidden_audio_numpy = gr.Audio(type="numpy", visible=False)
submit_btn = gr.Button("Submit")
with gr.Column():
cloned_out = gr.Audio(
label="Text to speech output", visible=False)
video_out = gr.Video(label="Waveform video",
elem_id="voice-video-out")
npz_file = gr.File(label=".npz file", visible=False)
folder_path = gr.Textbox(visible=False)
micro_in.stop_recording(fn=load_hidden_mic, inputs=[micro_in], outputs=[
hidden_audio_numpy], queue=False)
submit_btn.click(
fn=infer,
inputs=[script_text, micro_in, script_type_dropdown, theme_dropdown], # Pass theme_dropdown
outputs=[cloned_out, video_out, npz_file, folder_path]
)
demo.queue(api_open=False, max_size=10).launch()