hhyxnh commited on
Commit
6304271
1 Parent(s): 39422ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -57
app.py CHANGED
@@ -1,63 +1,18 @@
1
  import gradio as gr
2
- import random
3
- import time
4
 
 
5
 
6
- # 假设这是队标的URL或本地路径
7
- team_logo_url = './team-logo.jpg' # 替换为你的队标图片路径
 
8
 
9
- speakers = ["subway"]
10
- project_intro = """
11
- ## Automatic learning DEMO
12
-
13
- **atomatic learning是一个训练方式的探索**
14
- **通过采样视频素材来微调LLM和音色模型**
15
- 尽可能模仿出训练对象的说话语气和音色
16
-
17
- _训练结果来自嘉然4个视频,时长6小时_
18
-
19
- 项目使用方案
20
- - **语音**:bert-vits2 - **LLM**:Chat GLM-2
21
- 特别感谢:trochkera开源训练库
22
-
23
-
24
- **注意**
25
- - 所有文本数据来自视频ASR提取,价值观与基本信息未经人工对齐。所以我们不能对输出结果进行保证
26
- _(例如她不知道自己是女生还是男生,因为视频未提及。也可能出现LLM的“幻觉”现象)_
27
- - 所用的BERT-VITS2版本缘故,项目暂时只支持中文
28
-
29
- 项目即将开源,测试完成后率先打包至autodl社区-Code with GPU
30
-
31
- _我们诚挚地感谢您的支持与反馈。_
32
-
33
- _feedback email:hhyxnh@gmail_
34
-
35
-
36
- """
37
-
38
- with gr.Blocks() as demo:
39
- with gr.Row():
40
- with gr.Column(scale=4):
41
- gr.Image(value=team_logo_url, width=400)
42
- gr.Markdown(project_intro)
43
-
44
- with gr.Column(scale=8):
45
- chatbot = gr.Chatbot()
46
- msg = gr.Textbox(placeholder="Type your message here...")
47
- # people_speak = gr.Textbox(value="Human", label="Your name")
48
- bot_speak = gr.Dropdown(
49
- choices=speakers, value=speakers[0], label="Speaker"
50
- )
51
- with gr.Row():
52
- submit = gr.Button("Chat!", variant="primary")
53
- clear = gr.ClearButton([msg, chatbot])
54
- def respond(people_speak, bot_speak, message, chat_history):
55
- bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
56
- chat_history.append(( message, bot_speak + ": " + bot_message))
57
- time.sleep(1)
58
- return "", chat_history
59
-
60
- submit.click(respond, inputs=[bot_speak, msg, chatbot], outputs=[msg, chatbot])
61
 
62
  if __name__ == "__main__":
63
- demo.launch(share=True)
 
1
  import gradio as gr
2
+ from transformers import pipeline
 
3
 
4
+ pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
5
 
6
+ def predict(input_img):
7
+ predictions = pipeline(input_img)
8
+ return input_img, {p["label"]: p["score"] for p in predictions}
9
 
10
+ gradio_app = gr.Interface(
11
+ predict,
12
+ inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
13
+ outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
14
+ title="Hot Dog? Or Not?",
15
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  if __name__ == "__main__":
18
+ gradio_app.launch()