Add ollama endpoint support (#569)
Browse files* Add ollama endpoint support
* replace if by switch
* Add Ollama example in docs
README.md
CHANGED
@@ -313,6 +313,41 @@ MODELS=[
|
|
313 |
|
314 |
Start chat-ui with `npm run dev` and you should be able to chat with Zephyr locally.
|
315 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
#### Amazon
|
317 |
|
318 |
You can also specify your Amazon SageMaker instance as an endpoint for chat-ui. The config goes like this:
|
|
|
313 |
|
314 |
Start chat-ui with `npm run dev` and you should be able to chat with Zephyr locally.
|
315 |
|
316 |
+
#### Ollama
|
317 |
+
|
318 |
+
We also support the Ollama inference server. Spin up a model with
|
319 |
+
|
320 |
+
```cli
|
321 |
+
ollama run mistral
|
322 |
+
```
|
323 |
+
|
324 |
+
Then specify the endpoints like so:
|
325 |
+
|
326 |
+
```env
|
327 |
+
MODELS=[
|
328 |
+
{
|
329 |
+
"name": "Ollama Mistral",
|
330 |
+
"chatPromptTemplate": "<s>{{#each messages}}{{#ifUser}}[INST] {{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}} {{content}} [/INST]{{/ifUser}}{{#ifAssistant}}{{content}}</s> {{/ifAssistant}}{{/each}}",
|
331 |
+
"parameters": {
|
332 |
+
"temperature": 0.1,
|
333 |
+
"top_p": 0.95,
|
334 |
+
"repetition_penalty": 1.2,
|
335 |
+
"top_k": 50,
|
336 |
+
"truncate": 3072,
|
337 |
+
"max_new_tokens": 1024,
|
338 |
+
"stop": ["</s>"]
|
339 |
+
},
|
340 |
+
"endpoints": [
|
341 |
+
{
|
342 |
+
"type": "ollama",
|
343 |
+
"url" : "http://127.0.0.1:11434",
|
344 |
+
"ollamaName" : "mistral"
|
345 |
+
}
|
346 |
+
]
|
347 |
+
}
|
348 |
+
]
|
349 |
+
```
|
350 |
+
|
351 |
#### Amazon
|
352 |
|
353 |
You can also specify your Amazon SageMaker instance as an endpoint for chat-ui. The config goes like this:
|
src/lib/server/endpoints/endpoints.ts
CHANGED
@@ -5,6 +5,7 @@ import { z } from "zod";
|
|
5 |
import endpointAws, { endpointAwsParametersSchema } from "./aws/endpointAws";
|
6 |
import { endpointOAIParametersSchema, endpointOai } from "./openai/endpointOai";
|
7 |
import endpointLlamacpp, { endpointLlamacppParametersSchema } from "./llamacpp/endpointLlamacpp";
|
|
|
8 |
|
9 |
// parameters passed when generating text
|
10 |
interface EndpointParameters {
|
@@ -32,6 +33,7 @@ export const endpoints = {
|
|
32 |
aws: endpointAws,
|
33 |
openai: endpointOai,
|
34 |
llamacpp: endpointLlamacpp,
|
|
|
35 |
};
|
36 |
|
37 |
export const endpointSchema = z.discriminatedUnion("type", [
|
@@ -39,5 +41,6 @@ export const endpointSchema = z.discriminatedUnion("type", [
|
|
39 |
endpointOAIParametersSchema,
|
40 |
endpointTgiParametersSchema,
|
41 |
endpointLlamacppParametersSchema,
|
|
|
42 |
]);
|
43 |
export default endpoints;
|
|
|
5 |
import endpointAws, { endpointAwsParametersSchema } from "./aws/endpointAws";
|
6 |
import { endpointOAIParametersSchema, endpointOai } from "./openai/endpointOai";
|
7 |
import endpointLlamacpp, { endpointLlamacppParametersSchema } from "./llamacpp/endpointLlamacpp";
|
8 |
+
import endpointOllama, { endpointOllamaParametersSchema } from "./ollama/endpointOllama";
|
9 |
|
10 |
// parameters passed when generating text
|
11 |
interface EndpointParameters {
|
|
|
33 |
aws: endpointAws,
|
34 |
openai: endpointOai,
|
35 |
llamacpp: endpointLlamacpp,
|
36 |
+
ollama: endpointOllama,
|
37 |
};
|
38 |
|
39 |
export const endpointSchema = z.discriminatedUnion("type", [
|
|
|
41 |
endpointOAIParametersSchema,
|
42 |
endpointTgiParametersSchema,
|
43 |
endpointLlamacppParametersSchema,
|
44 |
+
endpointOllamaParametersSchema,
|
45 |
]);
|
46 |
export default endpoints;
|
src/lib/server/endpoints/llamacpp/endpointLlamacpp.ts
CHANGED
@@ -8,7 +8,7 @@ export const endpointLlamacppParametersSchema = z.object({
|
|
8 |
weight: z.number().int().positive().default(1),
|
9 |
model: z.any(),
|
10 |
type: z.literal("llamacpp"),
|
11 |
-
url: z.string().url(),
|
12 |
accessToken: z.string().min(1).default(HF_ACCESS_TOKEN),
|
13 |
});
|
14 |
|
|
|
8 |
weight: z.number().int().positive().default(1),
|
9 |
model: z.any(),
|
10 |
type: z.literal("llamacpp"),
|
11 |
+
url: z.string().url().default("http://127.0.0.1:8080"),
|
12 |
accessToken: z.string().min(1).default(HF_ACCESS_TOKEN),
|
13 |
});
|
14 |
|
src/lib/server/endpoints/ollama/endpointOllama.ts
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import { buildPrompt } from "$lib/buildPrompt";
|
2 |
+
import type { TextGenerationStreamOutput } from "@huggingface/inference";
|
3 |
+
import type { Endpoint } from "../endpoints";
|
4 |
+
import { z } from "zod";
|
5 |
+
|
6 |
+
export const endpointOllamaParametersSchema = z.object({
|
7 |
+
weight: z.number().int().positive().default(1),
|
8 |
+
model: z.any(),
|
9 |
+
type: z.literal("ollama"),
|
10 |
+
url: z.string().url().default("http://127.0.0.1:11434"),
|
11 |
+
ollamaName: z.string().min(1).optional(),
|
12 |
+
});
|
13 |
+
|
14 |
+
export function endpointOllama({
|
15 |
+
url,
|
16 |
+
model,
|
17 |
+
ollamaName,
|
18 |
+
}: z.infer<typeof endpointOllamaParametersSchema>): Endpoint {
|
19 |
+
return async ({ conversation }) => {
|
20 |
+
const prompt = await buildPrompt({
|
21 |
+
messages: conversation.messages,
|
22 |
+
webSearch: conversation.messages[conversation.messages.length - 1].webSearch,
|
23 |
+
preprompt: conversation.preprompt,
|
24 |
+
model,
|
25 |
+
});
|
26 |
+
|
27 |
+
const r = await fetch(`${url}/api/generate`, {
|
28 |
+
method: "POST",
|
29 |
+
headers: {
|
30 |
+
"Content-Type": "application/json",
|
31 |
+
},
|
32 |
+
body: JSON.stringify({
|
33 |
+
prompt,
|
34 |
+
model: ollamaName ?? model.name,
|
35 |
+
raw: true,
|
36 |
+
options: {
|
37 |
+
top_p: model.parameters.top_p,
|
38 |
+
top_k: model.parameters.top_k,
|
39 |
+
temperature: model.parameters.temperature,
|
40 |
+
repeat_penalty: model.parameters.repetition_penalty,
|
41 |
+
stop: model.parameters.stop,
|
42 |
+
num_predict: model.parameters.max_new_tokens,
|
43 |
+
},
|
44 |
+
}),
|
45 |
+
});
|
46 |
+
|
47 |
+
if (!r.ok) {
|
48 |
+
throw new Error(`Failed to generate text: ${await r.text()}`);
|
49 |
+
}
|
50 |
+
|
51 |
+
const encoder = new TextDecoderStream();
|
52 |
+
const reader = r.body?.pipeThrough(encoder).getReader();
|
53 |
+
|
54 |
+
return (async function* () {
|
55 |
+
let generatedText = "";
|
56 |
+
let tokenId = 0;
|
57 |
+
let stop = false;
|
58 |
+
while (!stop) {
|
59 |
+
// read the stream and log the outputs to console
|
60 |
+
const out = (await reader?.read()) ?? { done: false, value: undefined };
|
61 |
+
// we read, if it's done we cancel
|
62 |
+
if (out.done) {
|
63 |
+
reader?.cancel();
|
64 |
+
return;
|
65 |
+
}
|
66 |
+
|
67 |
+
if (!out.value) {
|
68 |
+
return;
|
69 |
+
}
|
70 |
+
|
71 |
+
let data = null;
|
72 |
+
try {
|
73 |
+
data = JSON.parse(out.value);
|
74 |
+
} catch (e) {
|
75 |
+
return;
|
76 |
+
}
|
77 |
+
if (!data.done) {
|
78 |
+
generatedText += data.response;
|
79 |
+
|
80 |
+
yield {
|
81 |
+
token: {
|
82 |
+
id: tokenId++,
|
83 |
+
text: data.response ?? "",
|
84 |
+
logprob: 0,
|
85 |
+
special: false,
|
86 |
+
},
|
87 |
+
generated_text: null,
|
88 |
+
details: null,
|
89 |
+
} satisfies TextGenerationStreamOutput;
|
90 |
+
} else {
|
91 |
+
stop = true;
|
92 |
+
yield {
|
93 |
+
token: {
|
94 |
+
id: tokenId++,
|
95 |
+
text: data.response ?? "",
|
96 |
+
logprob: 0,
|
97 |
+
special: true,
|
98 |
+
},
|
99 |
+
generated_text: generatedText,
|
100 |
+
details: null,
|
101 |
+
} satisfies TextGenerationStreamOutput;
|
102 |
+
}
|
103 |
+
}
|
104 |
+
})();
|
105 |
+
};
|
106 |
+
}
|
107 |
+
|
108 |
+
export default endpointOllama;
|
src/lib/server/models.ts
CHANGED
@@ -48,7 +48,7 @@ const modelConfig = z.object({
|
|
48 |
parameters: z
|
49 |
.object({
|
50 |
temperature: z.number().min(0).max(1),
|
51 |
-
truncate: z.number().int().positive(),
|
52 |
max_new_tokens: z.number().int().positive(),
|
53 |
stop: z.array(z.string()).optional(),
|
54 |
top_p: z.number().positive().optional(),
|
@@ -92,17 +92,21 @@ const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({
|
|
92 |
for (const endpoint of m.endpoints) {
|
93 |
if (random < endpoint.weight) {
|
94 |
const args = { ...endpoint, model: m };
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
}
|
107 |
}
|
108 |
random -= endpoint.weight;
|
|
|
48 |
parameters: z
|
49 |
.object({
|
50 |
temperature: z.number().min(0).max(1),
|
51 |
+
truncate: z.number().int().positive().optional(),
|
52 |
max_new_tokens: z.number().int().positive(),
|
53 |
stop: z.array(z.string()).optional(),
|
54 |
top_p: z.number().positive().optional(),
|
|
|
92 |
for (const endpoint of m.endpoints) {
|
93 |
if (random < endpoint.weight) {
|
94 |
const args = { ...endpoint, model: m };
|
95 |
+
|
96 |
+
switch (args.type) {
|
97 |
+
case "tgi":
|
98 |
+
return endpoints.tgi(args);
|
99 |
+
case "aws":
|
100 |
+
return await endpoints.aws(args);
|
101 |
+
case "openai":
|
102 |
+
return await endpoints.openai(args);
|
103 |
+
case "llamacpp":
|
104 |
+
return endpoints.llamacpp(args);
|
105 |
+
case "ollama":
|
106 |
+
return endpoints.ollama(args);
|
107 |
+
default:
|
108 |
+
// for legacy reason
|
109 |
+
return endpoints.tgi(args);
|
110 |
}
|
111 |
}
|
112 |
random -= endpoint.weight;
|