adbcode commited on
Commit
e05a1d1
1 Parent(s): 267443f

first draft

Browse files
.gitattributes CHANGED
@@ -33,3 +33,22 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ images/belgium_2.PNG filter=lfs diff=lfs merge=lfs -text
37
+ images/estonia.PNG filter=lfs diff=lfs merge=lfs -text
38
+ images/guiana.PNG filter=lfs diff=lfs merge=lfs -text
39
+ images/iraq.PNG filter=lfs diff=lfs merge=lfs -text
40
+ images/ireland.PNG filter=lfs diff=lfs merge=lfs -text
41
+ images/mali_2.PNG filter=lfs diff=lfs merge=lfs -text
42
+ images/newzealand_4.PNG filter=lfs diff=lfs merge=lfs -text
43
+ images/poland_3.PNG filter=lfs diff=lfs merge=lfs -text
44
+ images/portugal_3.PNG filter=lfs diff=lfs merge=lfs -text
45
+ images/singapore_3.PNG filter=lfs diff=lfs merge=lfs -text
46
+ images/spain_3.PNG filter=lfs diff=lfs merge=lfs -text
47
+ images/spain.PNG filter=lfs diff=lfs merge=lfs -text
48
+ images/suriname.PNG filter=lfs diff=lfs merge=lfs -text
49
+ images/switzerland_2.PNG filter=lfs diff=lfs merge=lfs -text
50
+ images/switzerland_4.PNG filter=lfs diff=lfs merge=lfs -text
51
+ images/thailand_5.PNG filter=lfs diff=lfs merge=lfs -text
52
+ images/togo_2.PNG filter=lfs diff=lfs merge=lfs -text
53
+ images/uk_3.PNG filter=lfs diff=lfs merge=lfs -text
54
+ images/uk.PNG filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<sep/>": 57522, "<s_iitcdip>": 57523, "<s_synthdog>": 57524, "<-1/>": 57525, "</s_MachineReadableZone>": 57526, "<s_MachineReadableZone>": 57527, "<s_INPUT_data>": 57528}
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from donut import DonutModel
7
+ from PIL import Image
8
+
9
+
10
+ def demo_process_vqa(input_img, question):
11
+ global pretrained_model, task_prompt, task_name
12
+ input_img = Image.fromarray(input_img)
13
+ user_prompt = task_prompt.replace("{user_input}", question)
14
+ return pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0]
15
+
16
+
17
+ def demo_process(input_img):
18
+ global pretrained_model, task_prompt, task_name
19
+ input_img = Image.fromarray(input_img)
20
+ best_output = pretrained_model.inference(image=input_img, prompt=task_prompt)["predictions"][0]
21
+ return best_output["text_sequence"].split(" </s_MachineReadableZone>")[0]
22
+
23
+
24
+ if __name__ == "__main__":
25
+ parser = argparse.ArgumentParser()
26
+ parser.add_argument("--task", type=str, default="s_passport")
27
+ parser.add_argument("--pretrained_path", type=str, default=os.getcwd())
28
+ parser.add_argument("--port", type=int, default=12345)
29
+ parser.add_argument("--url", type=str, default="0.0.0.0")
30
+ parser.add_argument("--sample_img_path", type=str)
31
+ args, left_argv = parser.parse_known_args()
32
+
33
+ task_name = args.task
34
+ if "docvqa" == task_name:
35
+ task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
36
+ else: # rvlcdip, cord, ...
37
+ task_prompt = f"<s_{task_name}>"
38
+
39
+ example_sample = [os.path.join("images", image) for image in os.listdir("images")]
40
+ if args.sample_img_path:
41
+ example_sample.append(args.sample_img_path)
42
+
43
+ pretrained_model = DonutModel.from_pretrained(args.pretrained_path)
44
+
45
+ if torch.cuda.is_available():
46
+ pretrained_model.half()
47
+ device = torch.device("cuda")
48
+ pretrained_model.to(device)
49
+
50
+ pretrained_model.eval()
51
+
52
+ gr.Interface(
53
+ fn=demo_process_vqa if task_name == "docvqa" else demo_process,
54
+ inputs=["image", "text"] if task_name == "docvqa" else "image",
55
+ outputs="text",
56
+ title="Demo of MRZ Extraction model based on 🍩 architecture",
57
+ examples=example_sample if example_sample else None
58
+ ).launch()
config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": ".",
3
+ "align_long_axis": false,
4
+ "architectures": [
5
+ "DonutModel"
6
+ ],
7
+ "input_size": [1280,960],
8
+ "max_length": 768,
9
+ "model_type": "donut",
10
+ "torch_dtype": "float32",
11
+ "transformers_version": "4.11.3",
12
+ "window_size": 10
13
+ }
donut/__init__.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Donut
3
+ Copyright (c) 2022-present NAVER Corp.
4
+ MIT License
5
+ """
6
+ from .model import DonutConfig, DonutModel
7
+ from .util import DonutDataset, JSONParseEvaluator, load_json, save_json
8
+
9
+ __all__ = [
10
+ "DonutConfig",
11
+ "DonutModel",
12
+ "DonutDataset",
13
+ "JSONParseEvaluator",
14
+ "load_json",
15
+ "save_json",
16
+ ]
donut/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (565 Bytes). View file
 
donut/__pycache__/model.cpython-311.pyc ADDED
Binary file (31.3 kB). View file
 
donut/__pycache__/util.cpython-311.pyc ADDED
Binary file (18.1 kB). View file
 
donut/_version.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ """
2
+ Donut
3
+ Copyright (c) 2022-present NAVER Corp.
4
+ MIT License
5
+ """
6
+ __version__ = "1.0.9"
donut/model.py ADDED
@@ -0,0 +1,609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Donut
3
+ Copyright (c) 2022-present NAVER Corp.
4
+ MIT License
5
+ """
6
+ import math
7
+ import os
8
+ import re
9
+ from typing import Any, List, Optional, Union
10
+
11
+ import numpy as np
12
+ import PIL
13
+ import timm
14
+ import torch
15
+ import torch.nn as nn
16
+ import torch.nn.functional as F
17
+ from PIL import ImageOps
18
+ from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
19
+ from timm.models.swin_transformer import SwinTransformer
20
+ from torchvision import transforms
21
+ from torchvision.transforms.functional import resize, rotate
22
+ from transformers import MBartConfig, MBartForCausalLM, XLMRobertaTokenizer
23
+ from transformers.file_utils import ModelOutput
24
+ from transformers.modeling_utils import PretrainedConfig, PreTrainedModel
25
+
26
+
27
+ class SwinEncoder(nn.Module):
28
+ r"""
29
+ Donut encoder based on SwinTransformer
30
+ Set the initial weights and configuration with a pretrained SwinTransformer and then
31
+ modify the detailed configurations as a Donut Encoder
32
+
33
+ Args:
34
+ input_size: Input image size (width, height)
35
+ align_long_axis: Whether to rotate image if height is greater than width
36
+ window_size: Window size(=patch size) of SwinTransformer
37
+ encoder_layer: Number of layers of SwinTransformer encoder
38
+ name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local.
39
+ otherwise, `swin_base_patch4_window12_384` will be set (using `timm`).
40
+ """
41
+
42
+ def __init__(
43
+ self,
44
+ input_size: List[int],
45
+ align_long_axis: bool,
46
+ window_size: int,
47
+ encoder_layer: List[int],
48
+ name_or_path: Union[str, bytes, os.PathLike] = None,
49
+ ):
50
+ super().__init__()
51
+ self.input_size = input_size
52
+ self.align_long_axis = align_long_axis
53
+ self.window_size = window_size
54
+ self.encoder_layer = encoder_layer
55
+
56
+ self.to_tensor = transforms.Compose(
57
+ [
58
+ transforms.ToTensor(),
59
+ transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
60
+ ]
61
+ )
62
+
63
+ self.model = SwinTransformer(
64
+ img_size=self.input_size,
65
+ depths=self.encoder_layer,
66
+ window_size=self.window_size,
67
+ patch_size=4,
68
+ embed_dim=128,
69
+ num_heads=[4, 8, 16, 32],
70
+ num_classes=0,
71
+ )
72
+
73
+ # weight init with swin
74
+ if not name_or_path:
75
+ swin_state_dict = timm.create_model("swin_base_patch4_window12_384", pretrained=True).state_dict()
76
+ new_swin_state_dict = self.model.state_dict()
77
+ for x in new_swin_state_dict:
78
+ if x.endswith("relative_position_index") or x.endswith("attn_mask"):
79
+ pass
80
+ elif (
81
+ x.endswith("relative_position_bias_table")
82
+ and self.model.layers[0].blocks[0].attn.window_size[0] != 12
83
+ ):
84
+ pos_bias = swin_state_dict[x].unsqueeze(0)[0]
85
+ old_len = int(math.sqrt(len(pos_bias)))
86
+ new_len = int(2 * window_size - 1)
87
+ pos_bias = pos_bias.reshape(1, old_len, old_len, -1).permute(0, 3, 1, 2)
88
+ pos_bias = F.interpolate(pos_bias, size=(new_len, new_len), mode="bicubic", align_corners=False)
89
+ new_swin_state_dict[x] = pos_bias.permute(0, 2, 3, 1).reshape(1, new_len ** 2, -1).squeeze(0)
90
+ else:
91
+ new_swin_state_dict[x] = swin_state_dict[x]
92
+ self.model.load_state_dict(new_swin_state_dict)
93
+
94
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
95
+ """
96
+ Args:
97
+ x: (batch_size, num_channels, height, width)
98
+ """
99
+ x = self.model.patch_embed(x)
100
+ x = self.model.pos_drop(x)
101
+ x = self.model.layers(x)
102
+ return x
103
+
104
+ def prepare_input(self, img: PIL.Image.Image, random_padding: bool = False) -> torch.Tensor:
105
+ """
106
+ Convert PIL Image to tensor according to specified input_size after following steps below:
107
+ - resize
108
+ - rotate (if align_long_axis is True and image is not aligned longer axis with canvas)
109
+ - pad
110
+ """
111
+ img = img.convert("RGB")
112
+ if self.align_long_axis and (
113
+ (self.input_size[0] > self.input_size[1] and img.width > img.height)
114
+ or (self.input_size[0] < self.input_size[1] and img.width < img.height)
115
+ ):
116
+ img = rotate(img, angle=-90, expand=True)
117
+ img = resize(img, min(self.input_size))
118
+ img.thumbnail((self.input_size[1], self.input_size[0]))
119
+ delta_width = self.input_size[1] - img.width
120
+ delta_height = self.input_size[0] - img.height
121
+ if random_padding:
122
+ pad_width = np.random.randint(low=0, high=delta_width + 1)
123
+ pad_height = np.random.randint(low=0, high=delta_height + 1)
124
+ else:
125
+ pad_width = delta_width // 2
126
+ pad_height = delta_height // 2
127
+ padding = (
128
+ pad_width,
129
+ pad_height,
130
+ delta_width - pad_width,
131
+ delta_height - pad_height,
132
+ )
133
+ return self.to_tensor(ImageOps.expand(img, padding))
134
+
135
+
136
+ class BARTDecoder(nn.Module):
137
+ """
138
+ Donut Decoder based on Multilingual BART
139
+ Set the initial weights and configuration with a pretrained multilingual BART model,
140
+ and modify the detailed configurations as a Donut decoder
141
+
142
+ Args:
143
+ decoder_layer:
144
+ Number of layers of BARTDecoder
145
+ max_position_embeddings:
146
+ The maximum sequence length to be trained
147
+ name_or_path:
148
+ Name of a pretrained model name either registered in huggingface.co. or saved in local,
149
+ otherwise, `hyunwoongko/asian-bart-ecjk` will be set (using `transformers`)
150
+ """
151
+
152
+ def __init__(
153
+ self, decoder_layer: int, max_position_embeddings: int, name_or_path: Union[str, bytes, os.PathLike] = None
154
+ ):
155
+ super().__init__()
156
+ self.decoder_layer = decoder_layer
157
+ self.max_position_embeddings = max_position_embeddings
158
+
159
+ self.tokenizer = XLMRobertaTokenizer.from_pretrained(
160
+ "hyunwoongko/asian-bart-ecjk" if not name_or_path else name_or_path
161
+ )
162
+
163
+ self.model = MBartForCausalLM(
164
+ config=MBartConfig(
165
+ is_decoder=True,
166
+ is_encoder_decoder=False,
167
+ add_cross_attention=True,
168
+ decoder_layers=self.decoder_layer,
169
+ max_position_embeddings=self.max_position_embeddings,
170
+ vocab_size=len(self.tokenizer),
171
+ scale_embedding=True,
172
+ add_final_layer_norm=True,
173
+ )
174
+ )
175
+ self.model.forward = self.forward # to get cross attentions and utilize `generate` function
176
+
177
+ self.model.config.is_encoder_decoder = True # to get cross-attention
178
+ self.add_special_tokens(["<sep/>"]) # <sep/> is used for representing a list in a JSON
179
+ self.model.model.decoder.embed_tokens.padding_idx = self.tokenizer.pad_token_id
180
+ self.model.prepare_inputs_for_generation = self.prepare_inputs_for_inference
181
+
182
+ # weight init with asian-bart
183
+ if not name_or_path:
184
+ bart_state_dict = MBartForCausalLM.from_pretrained("hyunwoongko/asian-bart-ecjk").state_dict()
185
+ new_bart_state_dict = self.model.state_dict()
186
+ for x in new_bart_state_dict:
187
+ if x.endswith("embed_positions.weight") and self.max_position_embeddings != 1024:
188
+ new_bart_state_dict[x] = torch.nn.Parameter(
189
+ self.resize_bart_abs_pos_emb(
190
+ bart_state_dict[x],
191
+ self.max_position_embeddings
192
+ + 2, # https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L118-L119
193
+ )
194
+ )
195
+ elif x.endswith("embed_tokens.weight") or x.endswith("lm_head.weight"):
196
+ new_bart_state_dict[x] = bart_state_dict[x][: len(self.tokenizer), :]
197
+ else:
198
+ new_bart_state_dict[x] = bart_state_dict[x]
199
+ self.model.load_state_dict(new_bart_state_dict)
200
+
201
+ def add_special_tokens(self, list_of_tokens: List[str]):
202
+ """
203
+ Add special tokens to tokenizer and resize the token embeddings
204
+ """
205
+ newly_added_num = self.tokenizer.add_special_tokens({"additional_special_tokens": sorted(set(list_of_tokens))})
206
+ if newly_added_num > 0:
207
+ self.model.resize_token_embeddings(len(self.tokenizer))
208
+
209
+ def prepare_inputs_for_inference(self, input_ids: torch.Tensor, encoder_outputs: torch.Tensor, past=None, use_cache: bool = None, attention_mask: torch.Tensor = None):
210
+ """
211
+ Args:
212
+ input_ids: (batch_size, sequence_lenth)
213
+ Returns:
214
+ input_ids: (batch_size, sequence_length)
215
+ attention_mask: (batch_size, sequence_length)
216
+ encoder_hidden_states: (batch_size, sequence_length, embedding_dim)
217
+ """
218
+ attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long()
219
+ if past is not None:
220
+ input_ids = input_ids[:, -1:]
221
+ output = {
222
+ "input_ids": input_ids,
223
+ "attention_mask": attention_mask,
224
+ "past_key_values": past,
225
+ "use_cache": use_cache,
226
+ "encoder_hidden_states": encoder_outputs.last_hidden_state,
227
+ }
228
+ return output
229
+
230
+ def forward(
231
+ self,
232
+ input_ids,
233
+ attention_mask: Optional[torch.Tensor] = None,
234
+ encoder_hidden_states: Optional[torch.Tensor] = None,
235
+ past_key_values: Optional[torch.Tensor] = None,
236
+ labels: Optional[torch.Tensor] = None,
237
+ use_cache: bool = None,
238
+ output_attentions: Optional[torch.Tensor] = None,
239
+ output_hidden_states: Optional[torch.Tensor] = None,
240
+ return_dict: bool = None,
241
+ ):
242
+ """
243
+ A forward fucntion to get cross attentions and utilize `generate` function
244
+
245
+ Source:
246
+ https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L1669-L1810
247
+
248
+ Args:
249
+ input_ids: (batch_size, sequence_length)
250
+ attention_mask: (batch_size, sequence_length)
251
+ encoder_hidden_states: (batch_size, sequence_length, hidden_size)
252
+
253
+ Returns:
254
+ loss: (1, )
255
+ logits: (batch_size, sequence_length, hidden_dim)
256
+ hidden_states: (batch_size, sequence_length, hidden_size)
257
+ decoder_attentions: (batch_size, num_heads, sequence_length, sequence_length)
258
+ cross_attentions: (batch_size, num_heads, sequence_length, sequence_length)
259
+ """
260
+ output_attentions = output_attentions if output_attentions is not None else self.model.config.output_attentions
261
+ output_hidden_states = (
262
+ output_hidden_states if output_hidden_states is not None else self.model.config.output_hidden_states
263
+ )
264
+ return_dict = return_dict if return_dict is not None else self.model.config.use_return_dict
265
+ outputs = self.model.model.decoder(
266
+ input_ids=input_ids,
267
+ attention_mask=attention_mask,
268
+ encoder_hidden_states=encoder_hidden_states,
269
+ past_key_values=past_key_values,
270
+ use_cache=use_cache,
271
+ output_attentions=output_attentions,
272
+ output_hidden_states=output_hidden_states,
273
+ return_dict=return_dict,
274
+ )
275
+
276
+ logits = self.model.lm_head(outputs[0])
277
+
278
+ loss = None
279
+ if labels is not None:
280
+ loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
281
+ loss = loss_fct(logits.view(-1, self.model.config.vocab_size), labels.view(-1))
282
+
283
+ if not return_dict:
284
+ output = (logits,) + outputs[1:]
285
+ return (loss,) + output if loss is not None else output
286
+
287
+ return ModelOutput(
288
+ loss=loss,
289
+ logits=logits,
290
+ past_key_values=outputs.past_key_values,
291
+ hidden_states=outputs.hidden_states,
292
+ decoder_attentions=outputs.attentions,
293
+ cross_attentions=outputs.cross_attentions,
294
+ )
295
+
296
+ @staticmethod
297
+ def resize_bart_abs_pos_emb(weight: torch.Tensor, max_length: int) -> torch.Tensor:
298
+ """
299
+ Resize position embeddings
300
+ Truncate if sequence length of Bart backbone is greater than given max_length,
301
+ else interpolate to max_length
302
+ """
303
+ if weight.shape[0] > max_length:
304
+ weight = weight[:max_length, ...]
305
+ else:
306
+ weight = (
307
+ F.interpolate(
308
+ weight.permute(1, 0).unsqueeze(0),
309
+ size=max_length,
310
+ mode="linear",
311
+ align_corners=False,
312
+ )
313
+ .squeeze(0)
314
+ .permute(1, 0)
315
+ )
316
+ return weight
317
+
318
+
319
+ class DonutConfig(PretrainedConfig):
320
+ r"""
321
+ This is the configuration class to store the configuration of a [`DonutModel`]. It is used to
322
+ instantiate a Donut model according to the specified arguments, defining the model architecture
323
+
324
+ Args:
325
+ input_size:
326
+ Input image size (canvas size) of Donut.encoder, SwinTransformer in this codebase
327
+ align_long_axis:
328
+ Whether to rotate image if height is greater than width
329
+ window_size:
330
+ Window size of Donut.encoder, SwinTransformer in this codebase
331
+ encoder_layer:
332
+ Depth of each Donut.encoder Encoder layer, SwinTransformer in this codebase
333
+ decoder_layer:
334
+ Number of hidden layers in the Donut.decoder, such as BART
335
+ max_position_embeddings
336
+ Trained max position embeddings in the Donut decoder,
337
+ if not specified, it will have same value with max_length
338
+ max_length:
339
+ Max position embeddings(=maximum sequence length) you want to train
340
+ name_or_path:
341
+ Name of a pretrained model name either registered in huggingface.co. or saved in local
342
+ """
343
+
344
+ model_type = "donut"
345
+
346
+ def __init__(
347
+ self,
348
+ input_size: List[int] = [2560, 1920],
349
+ align_long_axis: bool = False,
350
+ window_size: int = 10,
351
+ encoder_layer: List[int] = [2, 2, 14, 2],
352
+ decoder_layer: int = 4,
353
+ max_position_embeddings: int = None,
354
+ max_length: int = 1536,
355
+ name_or_path: Union[str, bytes, os.PathLike] = "",
356
+ **kwargs,
357
+ ):
358
+ super().__init__()
359
+ self.input_size = input_size
360
+ self.align_long_axis = align_long_axis
361
+ self.window_size = window_size
362
+ self.encoder_layer = encoder_layer
363
+ self.decoder_layer = decoder_layer
364
+ self.max_position_embeddings = max_length if max_position_embeddings is None else max_position_embeddings
365
+ self.max_length = max_length
366
+ self.name_or_path = name_or_path
367
+
368
+
369
+ class DonutModel(PreTrainedModel):
370
+ r"""
371
+ Donut: an E2E OCR-free Document Understanding Transformer.
372
+ The encoder maps an input document image into a set of embeddings,
373
+ the decoder predicts a desired token sequence, that can be converted to a structured format,
374
+ given a prompt and the encoder output embeddings
375
+ """
376
+ config_class = DonutConfig
377
+ base_model_prefix = "donut"
378
+
379
+ def __init__(self, config: DonutConfig):
380
+ super().__init__(config)
381
+ self.config = config
382
+ self.encoder = SwinEncoder(
383
+ input_size=self.config.input_size,
384
+ align_long_axis=self.config.align_long_axis,
385
+ window_size=self.config.window_size,
386
+ encoder_layer=self.config.encoder_layer,
387
+ name_or_path=self.config.name_or_path,
388
+ )
389
+ self.decoder = BARTDecoder(
390
+ max_position_embeddings=self.config.max_position_embeddings,
391
+ decoder_layer=self.config.decoder_layer,
392
+ name_or_path=self.config.name_or_path,
393
+ )
394
+
395
+ def forward(self, image_tensors: torch.Tensor, decoder_input_ids: torch.Tensor, decoder_labels: torch.Tensor):
396
+ """
397
+ Calculate a loss given an input image and a desired token sequence,
398
+ the model will be trained in a teacher-forcing manner
399
+
400
+ Args:
401
+ image_tensors: (batch_size, num_channels, height, width)
402
+ decoder_input_ids: (batch_size, sequence_length, embedding_dim)
403
+ decode_labels: (batch_size, sequence_length)
404
+ """
405
+ encoder_outputs = self.encoder(image_tensors)
406
+ decoder_outputs = self.decoder(
407
+ input_ids=decoder_input_ids,
408
+ encoder_hidden_states=encoder_outputs,
409
+ labels=decoder_labels,
410
+ )
411
+ return decoder_outputs
412
+
413
+ def inference(
414
+ self,
415
+ image: PIL.Image = None,
416
+ prompt: str = None,
417
+ image_tensors: Optional[torch.Tensor] = None,
418
+ prompt_tensors: Optional[torch.Tensor] = None,
419
+ return_json: bool = True,
420
+ return_attentions: bool = False,
421
+ ):
422
+ """
423
+ Generate a token sequence in an auto-regressive manner,
424
+ the generated token sequence is convereted into an ordered JSON format
425
+
426
+ Args:
427
+ image: input document image (PIL.Image)
428
+ prompt: task prompt (string) to guide Donut Decoder generation
429
+ image_tensors: (1, num_channels, height, width)
430
+ convert prompt to tensor if image_tensor is not fed
431
+ prompt_tensors: (1, sequence_length)
432
+ convert image to tensor if prompt_tensor is not fed
433
+ """
434
+ # prepare backbone inputs (image and prompt)
435
+ if image is None and image_tensors is None:
436
+ raise ValueError("Expected either image or image_tensors")
437
+ if all(v is None for v in {prompt, prompt_tensors}):
438
+ raise ValueError("Expected either prompt or prompt_tensors")
439
+
440
+ if image_tensors is None:
441
+ image_tensors = self.encoder.prepare_input(image).unsqueeze(0)
442
+
443
+ if self.device.type == "cuda": # half is not compatible in cpu implementation.
444
+ image_tensors = image_tensors.half()
445
+ image_tensors = image_tensors.to(self.device)
446
+
447
+ if prompt_tensors is None:
448
+ prompt_tensors = self.decoder.tokenizer(prompt, add_special_tokens=False, return_tensors="pt")["input_ids"]
449
+
450
+ prompt_tensors = prompt_tensors.to(self.device)
451
+
452
+ last_hidden_state = self.encoder(image_tensors)
453
+ if self.device.type != "cuda":
454
+ last_hidden_state = last_hidden_state.to(torch.float32)
455
+
456
+ encoder_outputs = ModelOutput(last_hidden_state=last_hidden_state, attentions=None)
457
+
458
+ if len(encoder_outputs.last_hidden_state.size()) == 1:
459
+ encoder_outputs.last_hidden_state = encoder_outputs.last_hidden_state.unsqueeze(0)
460
+ if len(prompt_tensors.size()) == 1:
461
+ prompt_tensors = prompt_tensors.unsqueeze(0)
462
+
463
+ # get decoder output
464
+ decoder_output = self.decoder.model.generate(
465
+ decoder_input_ids=prompt_tensors,
466
+ encoder_outputs=encoder_outputs,
467
+ max_length=self.config.max_length,
468
+ early_stopping=True,
469
+ pad_token_id=self.decoder.tokenizer.pad_token_id,
470
+ eos_token_id=self.decoder.tokenizer.eos_token_id,
471
+ use_cache=True,
472
+ num_beams=1,
473
+ bad_words_ids=[[self.decoder.tokenizer.unk_token_id]],
474
+ return_dict_in_generate=True,
475
+ output_attentions=return_attentions,
476
+ )
477
+
478
+ output = {"predictions": list()}
479
+ for seq in self.decoder.tokenizer.batch_decode(decoder_output.sequences):
480
+ seq = seq.replace(self.decoder.tokenizer.eos_token, "").replace(self.decoder.tokenizer.pad_token, "")
481
+ seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token
482
+ if return_json:
483
+ output["predictions"].append(self.token2json(seq))
484
+ else:
485
+ output["predictions"].append(seq)
486
+
487
+ if return_attentions:
488
+ output["attentions"] = {
489
+ "self_attentions": decoder_output.decoder_attentions,
490
+ "cross_attentions": decoder_output.cross_attentions,
491
+ }
492
+
493
+ return output
494
+
495
+ def json2token(self, obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):
496
+ """
497
+ Convert an ordered JSON object into a token sequence
498
+ """
499
+ if type(obj) == dict:
500
+ if len(obj) == 1 and "text_sequence" in obj:
501
+ return obj["text_sequence"]
502
+ else:
503
+ output = ""
504
+ if sort_json_key:
505
+ keys = sorted(obj.keys(), reverse=True)
506
+ else:
507
+ keys = obj.keys()
508
+ for k in keys:
509
+ if update_special_tokens_for_json_key:
510
+ self.decoder.add_special_tokens([fr"<s_{k}>", fr"</s_{k}>"])
511
+ output += (
512
+ fr"<s_{k}>"
513
+ + self.json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)
514
+ + fr"</s_{k}>"
515
+ )
516
+ return output
517
+ elif type(obj) == list:
518
+ return r"<sep/>".join(
519
+ [self.json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]
520
+ )
521
+ else:
522
+ obj = str(obj)
523
+ if f"<{obj}/>" in self.decoder.tokenizer.all_special_tokens:
524
+ obj = f"<{obj}/>" # for categorical special tokens
525
+ return obj
526
+
527
+ def token2json(self, tokens, is_inner_value=False):
528
+ """
529
+ Convert a (generated) token seuqnce into an ordered JSON format
530
+ """
531
+ output = dict()
532
+
533
+ while tokens:
534
+ start_token = re.search(r"<s_(.*?)>", tokens, re.IGNORECASE)
535
+ if start_token is None:
536
+ break
537
+ key = start_token.group(1)
538
+ end_token = re.search(fr"</s_{key}>", tokens, re.IGNORECASE)
539
+ start_token = start_token.group()
540
+ if end_token is None:
541
+ tokens = tokens.replace(start_token, "")
542
+ else:
543
+ end_token = end_token.group()
544
+ start_token_escaped = re.escape(start_token)
545
+ end_token_escaped = re.escape(end_token)
546
+ content = re.search(f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE)
547
+ if content is not None:
548
+ content = content.group(1).strip()
549
+ if r"<s_" in content and r"</s_" in content: # non-leaf node
550
+ value = self.token2json(content, is_inner_value=True)
551
+ if value:
552
+ if len(value) == 1:
553
+ value = value[0]
554
+ output[key] = value
555
+ else: # leaf nodes
556
+ output[key] = []
557
+ for leaf in content.split(r"<sep/>"):
558
+ leaf = leaf.strip()
559
+ if (
560
+ leaf in self.decoder.tokenizer.get_added_vocab()
561
+ and leaf[0] == "<"
562
+ and leaf[-2:] == "/>"
563
+ ):
564
+ leaf = leaf[1:-2] # for categorical special tokens
565
+ output[key].append(leaf)
566
+ if len(output[key]) == 1:
567
+ output[key] = output[key][0]
568
+
569
+ tokens = tokens[tokens.find(end_token) + len(end_token) :].strip()
570
+ if tokens[:6] == r"<sep/>": # non-leaf nodes
571
+ return [output] + self.token2json(tokens[6:], is_inner_value=True)
572
+
573
+ if len(output):
574
+ return [output] if is_inner_value else output
575
+ else:
576
+ return [] if is_inner_value else {"text_sequence": tokens}
577
+
578
+ @classmethod
579
+ def from_pretrained(
580
+ cls,
581
+ pretrained_model_name_or_path: Union[str, bytes, os.PathLike],
582
+ *model_args,
583
+ **kwargs,
584
+ ):
585
+ r"""
586
+ Instantiate a pretrained donut model from a pre-trained model configuration
587
+
588
+ Args:
589
+ pretrained_model_name_or_path:
590
+ Name of a pretrained model name either registered in huggingface.co. or saved in local,
591
+ e.g., `naver-clova-ix/donut-base`, or `naver-clova-ix/donut-base-finetuned-rvlcdip`
592
+ """
593
+ model = super(DonutModel, cls).from_pretrained(pretrained_model_name_or_path, revision="official", *model_args, **kwargs)
594
+
595
+ # truncate or interplolate position embeddings of donut decoder
596
+ max_length = kwargs.get("max_length", model.config.max_position_embeddings)
597
+ if (
598
+ max_length != model.config.max_position_embeddings
599
+ ): # if max_length of trained model differs max_length you want to train
600
+ model.decoder.model.model.decoder.embed_positions.weight = torch.nn.Parameter(
601
+ model.decoder.resize_bart_abs_pos_emb(
602
+ model.decoder.model.model.decoder.embed_positions.weight,
603
+ max_length
604
+ + 2, # https://github.com/huggingface/transformers/blob/v4.11.3/src/transformers/models/mbart/modeling_mbart.py#L118-L119
605
+ )
606
+ )
607
+ model.config.max_position_embeddings = max_length
608
+
609
+ return model
donut/util.py ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Donut
3
+ Copyright (c) 2022-present NAVER Corp.
4
+ MIT License
5
+ """
6
+ import json
7
+ import os
8
+ import random
9
+ from collections import defaultdict
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+ import torch
13
+ import zss
14
+ from datasets import load_dataset
15
+ from nltk import edit_distance
16
+ from torch.utils.data import Dataset
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from zss import Node
19
+
20
+
21
+ def save_json(write_path: Union[str, bytes, os.PathLike], save_obj: Any):
22
+ with open(write_path, "w") as f:
23
+ json.dump(save_obj, f)
24
+
25
+
26
+ def load_json(json_path: Union[str, bytes, os.PathLike]):
27
+ with open(json_path, "r") as f:
28
+ return json.load(f)
29
+
30
+
31
+ class DonutDataset(Dataset):
32
+ """
33
+ DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets)
34
+ Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt),
35
+ and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string)
36
+
37
+ Args:
38
+ dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl
39
+ ignore_id: ignore_index for torch.nn.CrossEntropyLoss
40
+ task_start_token: the special token to be fed to the decoder to conduct the target task
41
+ """
42
+
43
+ def __init__(
44
+ self,
45
+ dataset_name_or_path: str,
46
+ donut_model: PreTrainedModel,
47
+ max_length: int,
48
+ split: str = "train",
49
+ ignore_id: int = -100,
50
+ task_start_token: str = "<s>",
51
+ prompt_end_token: str = None,
52
+ sort_json_key: bool = True,
53
+ ):
54
+ super().__init__()
55
+
56
+ self.donut_model = donut_model
57
+ self.max_length = max_length
58
+ self.split = split
59
+ self.ignore_id = ignore_id
60
+ self.task_start_token = task_start_token
61
+ self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token
62
+ self.sort_json_key = sort_json_key
63
+
64
+ self.dataset = load_dataset(dataset_name_or_path, split=self.split)
65
+ self.dataset_length = len(self.dataset)
66
+
67
+ self.gt_token_sequences = []
68
+ #print(self.dataset)
69
+ for sample in self.dataset:
70
+ # print(sample)
71
+ # print(sample['ground_truth'])
72
+ ground_truth = json.loads(sample["ground_truth"])
73
+ # print(ground_truth)
74
+ if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa
75
+ assert isinstance(ground_truth["gt_parses"], list)
76
+ gt_jsons = ground_truth["gt_parses"]
77
+ else:
78
+ assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict)
79
+ gt_jsons = [ground_truth["gt_parse"]]
80
+
81
+ self.gt_token_sequences.append(
82
+ [
83
+ task_start_token
84
+ + self.donut_model.json2token(
85
+ gt_json,
86
+ update_special_tokens_for_json_key=self.split == "train",
87
+ sort_json_key=self.sort_json_key,
88
+ )
89
+ + self.donut_model.decoder.tokenizer.eos_token
90
+ for gt_json in gt_jsons # load json from list of json
91
+ ]
92
+ )
93
+
94
+ self.donut_model.decoder.add_special_tokens([self.task_start_token, self.prompt_end_token])
95
+ self.prompt_end_token_id = self.donut_model.decoder.tokenizer.convert_tokens_to_ids(self.prompt_end_token)
96
+
97
+ def __len__(self) -> int:
98
+ return self.dataset_length
99
+
100
+ def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
101
+ """
102
+ Load image from image_path of given dataset_path and convert into input_tensor and labels.
103
+ Convert gt data into input_ids (tokenized string)
104
+
105
+ Returns:
106
+ input_tensor : preprocessed image
107
+ input_ids : tokenized gt_data
108
+ labels : masked labels (model doesn't need to predict prompt and pad token)
109
+ """
110
+ sample = self.dataset[idx]
111
+
112
+ # input_tensor
113
+ input_tensor = self.donut_model.encoder.prepare_input(sample["image"], random_padding=self.split == "train")
114
+
115
+ # input_ids
116
+ processed_parse = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1
117
+ input_ids = self.donut_model.decoder.tokenizer(
118
+ processed_parse,
119
+ add_special_tokens=False,
120
+ max_length=self.max_length,
121
+ padding="max_length",
122
+ truncation=True,
123
+ return_tensors="pt",
124
+ )["input_ids"].squeeze(0)
125
+
126
+ if self.split == "train":
127
+ labels = input_ids.clone()
128
+ labels[
129
+ labels == self.donut_model.decoder.tokenizer.pad_token_id
130
+ ] = self.ignore_id # model doesn't need to predict pad token
131
+ labels[
132
+ : torch.nonzero(labels == self.prompt_end_token_id).sum() + 1
133
+ ] = self.ignore_id # model doesn't need to predict prompt (for VQA)
134
+ return input_tensor, input_ids, labels
135
+ else:
136
+ prompt_end_index = torch.nonzero(
137
+ input_ids == self.prompt_end_token_id
138
+ ).sum() # return prompt end index instead of target output labels
139
+ return input_tensor, input_ids, prompt_end_index, processed_parse
140
+
141
+
142
+ class JSONParseEvaluator:
143
+ """
144
+ Calculate n-TED(Normalized Tree Edit Distance) based accuracy and F1 accuracy score
145
+ """
146
+
147
+ @staticmethod
148
+ def flatten(data: dict):
149
+ """
150
+ Convert Dictionary into Non-nested Dictionary
151
+ Example:
152
+ input(dict)
153
+ {
154
+ "menu": [
155
+ {"name" : ["cake"], "count" : ["2"]},
156
+ {"name" : ["juice"], "count" : ["1"]},
157
+ ]
158
+ }
159
+ output(list)
160
+ [
161
+ ("menu.name", "cake"),
162
+ ("menu.count", "2"),
163
+ ("menu.name", "juice"),
164
+ ("menu.count", "1"),
165
+ ]
166
+ """
167
+ flatten_data = list()
168
+
169
+ def _flatten(value, key=""):
170
+ if type(value) is dict:
171
+ for child_key, child_value in value.items():
172
+ _flatten(child_value, f"{key}.{child_key}" if key else child_key)
173
+ elif type(value) is list:
174
+ for value_item in value:
175
+ _flatten(value_item, key)
176
+ else:
177
+ flatten_data.append((key, value))
178
+
179
+ _flatten(data)
180
+ return flatten_data
181
+
182
+ @staticmethod
183
+ def update_cost(node1: Node, node2: Node):
184
+ """
185
+ Update cost for tree edit distance.
186
+ If both are leaf node, calculate string edit distance between two labels (special token '<leaf>' will be ignored).
187
+ If one of them is leaf node, cost is length of string in leaf node + 1.
188
+ If neither are leaf node, cost is 0 if label1 is same with label2 othewise 1
189
+ """
190
+ label1 = node1.label
191
+ label2 = node2.label
192
+ label1_leaf = "<leaf>" in label1
193
+ label2_leaf = "<leaf>" in label2
194
+ if label1_leaf == True and label2_leaf == True:
195
+ return edit_distance(label1.replace("<leaf>", ""), label2.replace("<leaf>", ""))
196
+ elif label1_leaf == False and label2_leaf == True:
197
+ return 1 + len(label2.replace("<leaf>", ""))
198
+ elif label1_leaf == True and label2_leaf == False:
199
+ return 1 + len(label1.replace("<leaf>", ""))
200
+ else:
201
+ return int(label1 != label2)
202
+
203
+ @staticmethod
204
+ def insert_and_remove_cost(node: Node):
205
+ """
206
+ Insert and remove cost for tree edit distance.
207
+ If leaf node, cost is length of label name.
208
+ Otherwise, 1
209
+ """
210
+ label = node.label
211
+ if "<leaf>" in label:
212
+ return len(label.replace("<leaf>", ""))
213
+ else:
214
+ return 1
215
+
216
+ def normalize_dict(self, data: Union[Dict, List, Any]):
217
+ """
218
+ Sort by value, while iterate over element if data is list
219
+ """
220
+ if not data:
221
+ return {}
222
+
223
+ if isinstance(data, dict):
224
+ new_data = dict()
225
+ for key in sorted(data.keys(), key=lambda k: (len(k), k)):
226
+ value = self.normalize_dict(data[key])
227
+ if value:
228
+ if not isinstance(value, list):
229
+ value = [value]
230
+ new_data[key] = value
231
+
232
+ elif isinstance(data, list):
233
+ if all(isinstance(item, dict) for item in data):
234
+ new_data = []
235
+ for item in data:
236
+ item = self.normalize_dict(item)
237
+ if item:
238
+ new_data.append(item)
239
+ else:
240
+ new_data = [str(item).strip() for item in data if type(item) in {str, int, float} and str(item).strip()]
241
+ else:
242
+ new_data = [str(data).strip()]
243
+
244
+ return new_data
245
+
246
+ def cal_f1(self, preds: List[dict], answers: List[dict]):
247
+ """
248
+ Calculate global F1 accuracy score (field-level, micro-averaged) by counting all true positives, false negatives and false positives
249
+ """
250
+ total_tp, total_fn_or_fp = 0, 0
251
+ for pred, answer in zip(preds, answers):
252
+ pred, answer = self.flatten(self.normalize_dict(pred)), self.flatten(self.normalize_dict(answer))
253
+ for field in pred:
254
+ if field in answer:
255
+ total_tp += 1
256
+ answer.remove(field)
257
+ else:
258
+ total_fn_or_fp += 1
259
+ total_fn_or_fp += len(answer)
260
+ return total_tp / (total_tp + total_fn_or_fp / 2)
261
+
262
+ def construct_tree_from_dict(self, data: Union[Dict, List], node_name: str = None):
263
+ """
264
+ Convert Dictionary into Tree
265
+
266
+ Example:
267
+ input(dict)
268
+
269
+ {
270
+ "menu": [
271
+ {"name" : ["cake"], "count" : ["2"]},
272
+ {"name" : ["juice"], "count" : ["1"]},
273
+ ]
274
+ }
275
+
276
+ output(tree)
277
+ <root>
278
+ |
279
+ menu
280
+ / \
281
+ <subtree> <subtree>
282
+ / | | \
283
+ name count name count
284
+ / | | \
285
+ <leaf>cake <leaf>2 <leaf>juice <leaf>1
286
+ """
287
+ if node_name is None:
288
+ node_name = "<root>"
289
+
290
+ node = Node(node_name)
291
+
292
+ if isinstance(data, dict):
293
+ for key, value in data.items():
294
+ kid_node = self.construct_tree_from_dict(value, key)
295
+ node.addkid(kid_node)
296
+ elif isinstance(data, list):
297
+ if all(isinstance(item, dict) for item in data):
298
+ for item in data:
299
+ kid_node = self.construct_tree_from_dict(
300
+ item,
301
+ "<subtree>",
302
+ )
303
+ node.addkid(kid_node)
304
+ else:
305
+ for item in data:
306
+ node.addkid(Node(f"<leaf>{item}"))
307
+ else:
308
+ raise Exception(data, node_name)
309
+ return node
310
+
311
+ def cal_acc(self, pred: dict, answer: dict):
312
+ """
313
+ Calculate normalized tree edit distance(nTED) based accuracy.
314
+ 1) Construct tree from dict,
315
+ 2) Get tree distance with insert/remove/update cost,
316
+ 3) Divide distance with GT tree size (i.e., nTED),
317
+ 4) Calculate nTED based accuracy. (= max(1 - nTED, 0 ).
318
+ """
319
+ pred = self.construct_tree_from_dict(self.normalize_dict(pred))
320
+ answer = self.construct_tree_from_dict(self.normalize_dict(answer))
321
+ return max(
322
+ 0,
323
+ 1
324
+ - (
325
+ zss.distance(
326
+ pred,
327
+ answer,
328
+ get_children=zss.Node.get_children,
329
+ insert_cost=self.insert_and_remove_cost,
330
+ remove_cost=self.insert_and_remove_cost,
331
+ update_cost=self.update_cost,
332
+ return_operations=False,
333
+ )
334
+ / zss.distance(
335
+ self.construct_tree_from_dict(self.normalize_dict({})),
336
+ answer,
337
+ get_children=zss.Node.get_children,
338
+ insert_cost=self.insert_and_remove_cost,
339
+ remove_cost=self.insert_and_remove_cost,
340
+ update_cost=self.update_cost,
341
+ return_operations=False,
342
+ )
343
+ ),
344
+ )
images/belgium_2.PNG ADDED

Git LFS Details

  • SHA256: a32cbc9e525058ea8e69d2bfb333800109bc455a0b5c93f87266308cf198b467
  • Pointer size: 132 Bytes
  • Size of remote file: 1.22 MB
images/denmark_2.jpeg ADDED
images/estonia.PNG ADDED

Git LFS Details

  • SHA256: e4bfb2b8aec225e6a0948656a36a7fa88c74e4812549ed239fcf507910722289
  • Pointer size: 132 Bytes
  • Size of remote file: 2.29 MB
images/guiana.PNG ADDED

Git LFS Details

  • SHA256: 75745e82e312388f3fa4b74b821ef1bf152cea71abab00ee47232440ccac0ce3
  • Pointer size: 132 Bytes
  • Size of remote file: 3.21 MB
images/iraq.PNG ADDED

Git LFS Details

  • SHA256: 635cda83bf311f63b3d142074d6c0e60ad7456c327c6c0ebb13f208941ceedd2
  • Pointer size: 132 Bytes
  • Size of remote file: 3.04 MB
images/ireland.PNG ADDED

Git LFS Details

  • SHA256: 6297002ae1bb56b08c5056b38cda9481fc30c76129f1c5ce8fe83f564a051079
  • Pointer size: 132 Bytes
  • Size of remote file: 1.55 MB
images/mali_2.PNG ADDED

Git LFS Details

  • SHA256: eebf7ab32c68fde48cd47cf29737a717f44b78c0fe59cca44f80514255c2ecc3
  • Pointer size: 132 Bytes
  • Size of remote file: 2.88 MB
images/newzealand_4.PNG ADDED

Git LFS Details

  • SHA256: d7914516d87e16f124280c9f228d39ba040f015bf0a7deb63ee5875cb3bc7248
  • Pointer size: 132 Bytes
  • Size of remote file: 2.26 MB
images/poland_3.PNG ADDED

Git LFS Details

  • SHA256: 8198fe99ac94721e5a356a91bd468a25046dbe72ad57fd0479d48f5d98c89300
  • Pointer size: 132 Bytes
  • Size of remote file: 2.84 MB
images/portugal_3.PNG ADDED

Git LFS Details

  • SHA256: 33722b34eb5a9d90a6ba8b8197fa140dee30794cb4fe72b41c236c9157fa9512
  • Pointer size: 132 Bytes
  • Size of remote file: 2.5 MB
images/singapore_3.PNG ADDED

Git LFS Details

  • SHA256: e21e503f13a7a5617b62c2c3b3fa2c01ac4a0e88768fbb46d758b78df92e36b5
  • Pointer size: 132 Bytes
  • Size of remote file: 2.29 MB
images/spain.PNG ADDED

Git LFS Details

  • SHA256: 11f06c0e606160d2bdf6d2fc9dbf9bff92bc2007c9fd29b61f50a847fadb1f63
  • Pointer size: 132 Bytes
  • Size of remote file: 1.63 MB
images/spain_3.PNG ADDED

Git LFS Details

  • SHA256: 43da95c507550f19ec6bb454e094450cda49f3f9ba223b7f6fecefce10b29b35
  • Pointer size: 132 Bytes
  • Size of remote file: 1.51 MB
images/suriname.PNG ADDED

Git LFS Details

  • SHA256: ee2b410ed207089f1c4c1f93a0ea9be787883085a4241eeb33a332d6775e66c8
  • Pointer size: 132 Bytes
  • Size of remote file: 3.24 MB
images/switzerland_2.PNG ADDED

Git LFS Details

  • SHA256: 2422bf27ebb84709343fcee203c908e8f53ff790bc9d02b685a6ae9cb880b2c8
  • Pointer size: 132 Bytes
  • Size of remote file: 2.76 MB
images/switzerland_4.PNG ADDED

Git LFS Details

  • SHA256: 2be5228a1d78c48e569a61c2d048a59ea7aec5dfe668ffc111ceca2d57e9eb18
  • Pointer size: 132 Bytes
  • Size of remote file: 2.77 MB
images/thailand_5.PNG ADDED

Git LFS Details

  • SHA256: 744a0e9bea866a1ec409a42c6401e43bf9f56854881eb33b9bdbef96b74ed6ae
  • Pointer size: 132 Bytes
  • Size of remote file: 2.92 MB
images/togo_2.PNG ADDED

Git LFS Details

  • SHA256: bfa721e36d28fffa7f815139b22b7cbebd7dfb93328f503a75121b4e903e7453
  • Pointer size: 132 Bytes
  • Size of remote file: 2.44 MB
images/uk.PNG ADDED

Git LFS Details

  • SHA256: d43ca4910764f0a96fc6d5d240c968b96ae82bbe60e3db1ae7b01b218962ca04
  • Pointer size: 132 Bytes
  • Size of remote file: 2.07 MB
images/uk_3.PNG ADDED

Git LFS Details

  • SHA256: 8470ce35a28c327cb1bd4a043bd6154d31f4acdd5a98b75c737c8e32bf73c32d
  • Pointer size: 132 Bytes
  • Size of remote file: 2.14 MB
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d1ac44133e20fc3af447c27598b241669b8aa475954bec445b37c85eae9c88a
3
+ size 858374659
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ donut-python
3
+ timm==0.6.13
4
+ transformers==4.25.1
5
+ gradio
6
+ Pillow
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb9e3dce4c326195d08fc3dd0f7e2eee1da8595c847bf4c1a9c78b7a82d47e2d
3
+ size 1296245
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}, "additional_special_tokens": ["<s_INPUT_data>"]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "from_slow": true, "name_or_path": "naver-clova-ix/donut-base", "processor_class": "DonutProcessor", "special_tokens_map_file": null, "tokenizer_file": "/root/.cache/huggingface/transformers/8dff5958cbdb9de4188d643398d5d92bebb82976ce97e6f741b4793e21600485.01bf49938a78cb9ef1792abc3a5829ec39a7887935548bf42fd8d76bf07f15d8", "tokenizer_class": "XLMRobertaTokenizer"}