ACMC
initial commit
7e73556
raw
history blame
6.38 kB
import numpy as np
from collections import defaultdict
import tiktoken
def check_format_errors(train_dataset):
"""
Extracted from: https://cookbook.openai.com/examples/chat_finetuning_data_prep
"""
# Format error checks
format_errors = defaultdict(int)
for ex in train_dataset:
if not isinstance(ex, dict):
format_errors["data_type"] += 1
continue
messages = ex.get("messages", None)
if not messages:
format_errors["missing_messages_list"] += 1
continue
for message in messages:
if "role" not in message or "content" not in message:
format_errors["message_missing_key"] += 1
if any(k not in ("role", "content", "name", "function_call", "weight") for k in message):
format_errors["message_unrecognized_key"] += 1
if message.get("role", None) not in ("system", "user", "assistant", "function"):
format_errors["unrecognized_role"] += 1
content = message.get("content", None)
function_call = message.get("function_call", None)
if (not content and not function_call) or not isinstance(content, str):
format_errors["missing_content"] += 1
if not any(message.get("role", None) == "assistant" for message in messages):
format_errors["example_missing_assistant_message"] += 1
if format_errors:
print("Found errors:")
for k, v in format_errors.items():
print(f"{k}: {v}")
else:
print("No errors found")
return format_errors if format_errors else {}
def get_distributions(train_dataset):
"""
Extracted from: https://cookbook.openai.com/examples/chat_finetuning_data_prep
Gets the distributions of the number of messages per example, the total number of tokens per example, and the number of assistant tokens per example.
"""
encoding = tiktoken.get_encoding("cl100k_base")
# not exact!
# simplified from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_messages(messages, tokens_per_message=3, tokens_per_name=1):
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3
return num_tokens
def num_assistant_tokens_from_messages(messages):
num_tokens = 0
for message in messages:
if message["role"] == "assistant":
num_tokens += len(encoding.encode(message["content"]))
return num_tokens
n_missing_system = 0
n_missing_user = 0
n_messages = []
convo_lens = []
assistant_message_lens = []
for ex in train_dataset:
messages = ex["messages"]
if not any(message["role"] == "system" for message in messages):
n_missing_system += 1
if not any(message["role"] == "user" for message in messages):
n_missing_user += 1
n_messages.append(len(messages))
convo_lens.append(num_tokens_from_messages(messages))
assistant_message_lens.append(num_assistant_tokens_from_messages(messages))
return {
"n_missing_system": n_missing_system,
"n_missing_user": n_missing_user,
"n_messages": n_messages,
"convo_lens": convo_lens,
"assistant_message_lens": assistant_message_lens
}
def check_token_counts(train_dataset):
"""
Extracted from: https://cookbook.openai.com/examples/chat_finetuning_data_prep
"""
def print_distribution(values, name):
print(f"\n#### Distribution of {name}:")
print(f"min / max: {min(values)}, {max(values)}")
print(f"mean / median: {np.mean(values)}, {np.median(values)}")
print(f"p5 / p95: {np.quantile(values, 0.1)}, {np.quantile(values, 0.9)}")
# Warnings and tokens counts
distributions = get_distributions(train_dataset)
n_missing_system = distributions["n_missing_system"]
n_missing_user = distributions["n_missing_user"]
n_messages = distributions["n_messages"]
convo_lens = distributions["convo_lens"]
assistant_message_lens = distributions["assistant_message_lens"]
print("Num examples missing system message:", n_missing_system)
print("Num examples missing user message:", n_missing_user)
print_distribution(n_messages, "num_messages_per_example")
print_distribution(convo_lens, "num_total_tokens_per_example")
print_distribution(assistant_message_lens, "num_assistant_tokens_per_example")
n_too_long = sum(l > 4096 for l in convo_lens)
print(
f"\n{n_too_long} examples may be over the 4096 token limit, they will be truncated during fine-tuning"
)
return
def estimate_cost(train_dataset):
"""
Extracted from: https://cookbook.openai.com/examples/chat_finetuning_data_prep
"""
distributions = get_distributions(train_dataset)
n_missing_system = distributions["n_missing_system"]
n_missing_user = distributions["n_missing_user"]
n_messages = distributions["n_messages"]
convo_lens = distributions["convo_lens"]
assistant_message_lens = distributions["assistant_message_lens"]
# Pricing and default n_epochs estimate
MAX_TOKENS_PER_EXAMPLE = 4096
TARGET_EPOCHS = 3
MIN_TARGET_EXAMPLES = 100
MAX_TARGET_EXAMPLES = 25000
MIN_DEFAULT_EPOCHS = 1
MAX_DEFAULT_EPOCHS = 25
n_epochs = TARGET_EPOCHS
n_train_examples = len(train_dataset)
if n_train_examples * TARGET_EPOCHS < MIN_TARGET_EXAMPLES:
n_epochs = min(MAX_DEFAULT_EPOCHS, MIN_TARGET_EXAMPLES // n_train_examples)
elif n_train_examples * TARGET_EPOCHS > MAX_TARGET_EXAMPLES:
n_epochs = max(MIN_DEFAULT_EPOCHS, MAX_TARGET_EXAMPLES // n_train_examples)
n_billing_tokens_in_dataset = sum(
min(MAX_TOKENS_PER_EXAMPLE, length) for length in convo_lens
)
return {
"Estimated number of tokens in dataset": n_billing_tokens_in_dataset,
f"Estimated number of tokens that will be billed (assuming {n_epochs} training epochs)": n_epochs * n_billing_tokens_in_dataset
}