File size: 13,535 Bytes
7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 bd73a7b 7e73556 05e7fc2 7e73556 bf9e30f bd73a7b bf9e30f bd73a7b bf9e30f 7e73556 bf9e30f bd73a7b bf9e30f bd73a7b bf9e30f bd73a7b 7e73556 bf9e30f 7e73556 bd73a7b 7e73556 bf9e30f bd73a7b bf9e30f bd73a7b bf9e30f 7e73556 bf9e30f 7e73556 bf9e30f 7e73556 bd73a7b ac08d51 bd73a7b 7e73556 bf9e30f ac08d51 7e73556 dddf315 7e73556 bf9e30f bd73a7b bf9e30f bd73a7b bf9e30f bd73a7b 7e73556 bd73a7b 7e73556 bf9e30f ac08d51 7e73556 bf9e30f 7e73556 bf9e30f bd73a7b bf9e30f 7e73556 ac08d51 bf9e30f 7e73556 bf9e30f 7e73556 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# %%
import io
import json
import logging
from uuid import uuid4
import datasets
import gradio as gr
import matplotlib.pyplot as plt
from utils import (process_chat_file,
transform_conversations_dataset_into_training_examples)
from validation import check_format_errors, estimate_cost, get_distributions
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def convert_to_dataset(files, do_spelling_correction, progress, whatsapp_name, datetime_dayfirst, message_line_format):
modified_dataset = None
for file in progress.tqdm(files, desc="Processing files"):
try:
if modified_dataset is None:
# First file
modified_dataset = process_chat_file(
file,
do_spelling_correction=do_spelling_correction,
whatsapp_name=whatsapp_name,
datetime_dayfirst=datetime_dayfirst,
message_line_format=message_line_format,
)
else:
# Concatenate the datasets
this_file_dataset = process_chat_file(
file,
do_spelling_correction=do_spelling_correction,
whatsapp_name=whatsapp_name,
datetime_dayfirst=datetime_dayfirst,
message_line_format=message_line_format,
)
modified_dataset = datasets.concatenate_datasets(
[modified_dataset, this_file_dataset]
)
except Exception as e:
logger.error(f"Error processing file {file}: {e}")
raise gr.Error(f"Error processing file {file}: {e}")
return modified_dataset
def file_upload_callback(
files,
system_prompt,
do_spelling_correction,
validation_split,
user_role,
model_role,
whatsapp_name,
datetime_dayfirst,
message_line_format,
progress=gr.Progress(),
):
logger.info(f"Processing {files}")
full_system_prompt = f"""# Task
You are a chatbot. Your goal is to simulate realistic, natural chat conversations as if you were me.
The {model_role} and the {user_role} can send multiple messages in a row, as a JSON list of strings. Your answer always needs to be JSON compliant. The strings are delimited by double quotes ("). The strings are separated by a comma (,). The list is delimited by square brackets ([, ]). Always start your answer with [", and close it with "]. Do not write anything else in your answer after "].
# Information about me
{system_prompt}"""
# Example
# [{{\"role\":\"user\",\"content\":\"[\"Hello!\",\"How are you?\"]\"}},{{\"role\":\"assistant\",\"content\":\"[\"Hi!\",\"I'm doing great.\",\"What about you?\"]\"}},{{\"role\":\"user\",\"content\":\"[\"I'm doing well.\",\"Have you been travelling?\"]\"}}]
# Response:
# [{{\"role\":\"assistant\",\"content\":\"[\"Yes, I've been to many places.\",\"I love travelling.\"]\"}}]"""
# Check if the user has not chosen any files
if not files or len(files) == 0:
raise gr.Error("Please upload at least one file.")
# Check if the user has not entered their whatsapp name
if not whatsapp_name or len(whatsapp_name) == 0:
raise gr.Error("Please enter your WhatsApp name.")
# # Avoid using the full system prompt for now, as it is too long and increases the cost of the training
# full_system_prompt = system_prompt
dataset = convert_to_dataset(
files=files,
progress=progress,
do_spelling_correction=do_spelling_correction,
whatsapp_name=whatsapp_name,
datetime_dayfirst=datetime_dayfirst,
message_line_format=message_line_format,
)
logger.info(f"Number of conversations of dataset before being transformed: {len(dataset)}")
training_examples_ds = transform_conversations_dataset_into_training_examples(
conversations_ds=dataset,
system_prompt=full_system_prompt,
user_role=user_role,
model_role=model_role,
whatsapp_name=whatsapp_name,
)
logger.info(f"Number of training examples: {len(training_examples_ds)}")
# Split into training and validation datasets (80% and 20%)
training_examples_ds = training_examples_ds.train_test_split(
test_size=validation_split, seed=42
)
training_examples_ds, validation_examples_ds = (
training_examples_ds["train"],
training_examples_ds["test"],
)
training_examples_ds = training_examples_ds # .select(
# range(min(250, len(training_examples_ds)))
# )
validation_examples_ds = validation_examples_ds.select(
range(min(200, len(validation_examples_ds)))
)
format_errors = check_format_errors(
training_examples_ds, user_role=user_role, model_role=model_role
)
distributions = get_distributions(
training_examples_ds, user_role=user_role, model_role=model_role
)
cost_stats = estimate_cost(
training_examples_ds, user_role=user_role, model_role=model_role
)
stats = {
"Format Errors": format_errors,
"Number of examples missing system message": distributions["n_missing_system"],
"Number of examples missing user message": distributions["n_missing_user"],
"Cost Statistics": cost_stats,
}
fig_num_messages_distribution_plot = plt.figure()
num_messages_distribution_plot = plt.hist(distributions["n_messages"], bins=20)
fig_num_total_tokens_per_example_plot = plt.figure()
num_total_tokens_per_example_plot = plt.hist(distributions["convo_lens"], bins=20)
fig_num_assistant_tokens_per_example_plot = plt.figure()
num_assistant_tokens_per_example_plot = plt.hist(
distributions["assistant_message_lens"], bins=20
)
# The DownloadFile component requires a path to the file, it can't accept a buffer to keep the file in memory.
# Therefore, we need to save the buffer to a file and then pass the path to the DownloadFile component.
# However, if different users are using the app at the same time, we need to make sure that the file is unique AND that no user can access the file of another user.
# We can use a UUID generator to create a unique file name.
uuid = str(uuid4())
file_path = f"training_examples_{uuid}.jsonl"
training_examples_ds.to_json(path_or_buf=file_path, force_ascii=False)
file_path_validation = f"validation_examples_{uuid}.jsonl"
validation_examples_ds.to_json(path_or_buf=file_path_validation, force_ascii=False)
# If there's less than 50 training examples, show a warning message
if len(training_examples_ds) < 50:
gr.Warning(
"Warning: There are less than 50 training examples. The model may not perform well with such a small dataset. Consider adding more chat files to increase the number of training examples."
)
system_prompt_to_use = full_system_prompt
return (
file_path,
gr.update(visible=True),
file_path_validation,
gr.update(visible=True),
stats,
fig_num_messages_distribution_plot,
fig_num_total_tokens_per_example_plot,
fig_num_assistant_tokens_per_example_plot,
system_prompt_to_use,
gr.update(visible=True),
)
def remove_file_and_hide_button(file_path):
import os
# try:
# os.remove(file_path)
# except Exception as e:
# logger.info(f"Error removing file {file_path}: {e}")
return gr.update(visible=False)
theme = gr.themes.Default(primary_hue="cyan", secondary_hue="fuchsia")
with gr.Blocks(theme=theme) as demo:
gr.Markdown(
"""
# WhatsApp Chat to Dataset Converter
Upload your WhatsApp chat files and convert them into a Dataset.
"""
)
gr.Markdown(
"""
## Instructions
1. Click on the "Upload WhatsApp Chat Files" button.
2. Select the WhatsApp chat files you want to convert.
3. Write a prompt about you to give context to the training examples.
4. Click on the "Submit" button.
5. Wait for the process to finish.
6. Download the generated training examples as a JSONL file.
7. Use the training examples to train your own model.
"""
)
input_files = gr.File(
label="Upload WhatsApp Chat Files",
type="filepath",
file_count="multiple",
file_types=["txt"],
)
system_prompt = gr.Textbox(
label="System Prompt",
placeholder="Background information about you.",
lines=5,
info="Enter the system prompt to be used for the training examples generation. This is the background information about you that will be used to generate the training examples.",
value="""Aldan is an AI researcher who loves to play around with AI systems, travelling and learning new things.""",
)
whatsapp_name = gr.Textbox(
label="Your WhatsApp Name",
placeholder="Your WhatsApp Name",
info="Enter your WhatsApp name as it appears in your profile. It needs to match exactly your name. If you're unsure, you can check the chat messages to see it.",
)
# Advanced parameters section, collapsed by default
with gr.Accordion(label="Advanced Parameters", open=False):
gr.Markdown(
"""
These are advanced parameters that you can change if you know what you're doing. If you're unsure, you can leave them as they are.
"""
)
user_role = gr.Textbox(
label="Role for User",
info="This is a technical parameter. If you don't know what to write, just type 'user'.",
value="user",
)
model_role = gr.Textbox(
label="Role for Model",
info="This is a technical parameter. Usual values are 'model' or 'assistant'.",
value="model",
)
message_line_format = gr.Textbox(
label="Message Line Format",
info="Format of each message line in the chat file, as a regular expression. The default value should work for most cases.",
value=r"\[?(?P<msg_datetime>\S+,\s\S+?(?:\s[APap][Mm])?)\]? (?:- )?(?P<contact_name>.+): (?P<message>.+)",
)
datetime_dayfirst = gr.Checkbox(
label="Date format: Day first",
info="Check this box if the date time format in the chat messages is in the format 'DD/MM/YYYY'. You can check your phone settings to see the date format. Otherwise, it will be assumed that the date time format is 'MM/DD/YYYY'.",
value=True,
)
do_spelling_correction = gr.Checkbox(
label="Do Spelling Correction (English)",
info="Check this box if you want to perform spelling correction on the chat messages before generating the training examples.",
)
# Allow the user to choose the validation split size
validation_split = gr.Slider(
minimum=0.0,
maximum=0.5,
value=0.2,
interactive=True,
label="Validation Split",
info="Choose the percentage of the dataset to be used for validation. For example, if you choose 0.2, 20% of the dataset will be used for validation and 80% for training.",
)
submit = gr.Button(value="Submit", variant="primary")
output_file = gr.DownloadButton(
label="Download Generated Training Examples", visible=False, variant="primary"
)
output_file_validation = gr.DownloadButton(
label="Download Generated Validation Examples",
visible=False,
variant="secondary",
)
system_prompt_to_use = gr.Textbox(label="System Prompt that you can use", visible=False, interactive=False, show_copy_button=True, info="When using the model, if you're asked for a system prompt, you can use this text.")
# output_example = gr.JSON(label="Example Training Example")
with gr.Group():
# Statistics about the dataset
gr.Markdown("## Statistics")
written_stats = gr.JSON()
num_messages_distribution_plot = gr.Plot(
label="Number of Messages Distribution"
)
num_total_tokens_per_example_plot = gr.Plot(
label="Total Number of Tokens per Example"
)
num_assistant_tokens_per_example_plot = gr.Plot(
label="Number of Assistant Tokens per Example"
)
submit.click(
file_upload_callback,
inputs=[
input_files,
system_prompt,
do_spelling_correction,
validation_split,
user_role,
model_role,
whatsapp_name,
datetime_dayfirst,
message_line_format,
],
outputs=[
output_file,
output_file,
output_file_validation,
output_file_validation,
written_stats,
num_messages_distribution_plot,
num_total_tokens_per_example_plot,
num_assistant_tokens_per_example_plot,
system_prompt_to_use,
system_prompt_to_use
],
)
output_file.click(
remove_file_and_hide_button, inputs=[output_file], outputs=[output_file]
)
output_file_validation.click(
remove_file_and_hide_button,
inputs=[output_file_validation],
outputs=[output_file_validation],
)
if __name__ == "__main__":
demo.launch()
|