Spaces:
Runtime error
Runtime error
File size: 13,281 Bytes
8a8183d c8fc26b 669631f 8a8183d 4cade91 8a8183d 669631f 8a8183d 669631f 8a8183d c8fc26b 8a8183d c8fc26b 8a8183d 669631f 8a8183d 4cade91 8a8183d 4cade91 8a8183d 4cade91 8a8183d 4cade91 8a8183d 4cade91 669631f 4cade91 669631f 4cade91 669631f 4cade91 669631f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
from dotenv import load_dotenv
import os
load_dotenv()
import concurrent.futures
from collections import defaultdict
import pandas as pd
import numpy as np
import json
import pickle
import pprint
from io import StringIO
import textwrap
import time
import re
from openai import OpenAI
openai_client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
import octoai
octoai_client = octoai.client.Client(token=os.getenv('OCTOML_KEY'))
from pinecone import Pinecone, ServerlessSpec
pc = Pinecone(api_key=os.getenv('PINECONE_API_KEY'))
pc_256 = pc.Index('prorata-postman-ds-256-v2')
pc_128 = pc.Index('prorata-postman-ds-128-v2')
from langchain.text_splitter import RecursiveCharacterTextSplitter
sentence_splitter = RecursiveCharacterTextSplitter(
chunk_size=128,
chunk_overlap=0,
separators=["\n\n", "\n", "."],
keep_separator=False
)
from functools import cache
@cache
def get_embedding(text, model="text-embedding-3-small"):
text = text.replace("\n", " ")
return openai_client.embeddings.create(input = [text], model=model).data[0].embedding
def get_embedding_l(text_l, model="text-embedding-3-small"):
text_l = [text.replace("\n", " ") for text in text_l]
res = openai_client.embeddings.create(input=text_l, model=model)
embeds = [record.embedding for record in res.data]
return embeds
def parse_json_string(content):
fixed_content = content
for _ in range(20):
try:
result = json.loads(fixed_content)
break
except Exception as e:
print(e)
if "Expecting ',' delimiter" in str(e):
# "Expecting , delimiter: line x column y (char d)"
idx = int(re.findall(r'\(char (\d+)\)', str(e))[0])
fixed_content = fixed_content[:idx] + ',' + fixed_content[idx:]
print(fixed_content)
print()
elif "Expecting property name enclosed in double quotes" in str(e):
# Expecting property name enclosed in double quotes: line x column y (char d)
idx = int(re.findall(r'\(char (\d+)\)', str(e))[0])
fixed_content = fixed_content[:idx-1] + '}' + fixed_content[idx:]
print(fixed_content)
print()
else:
raise ValueError(str(e))
return result
# prompt_af_template_llama3 = "Please breakdown the following paragraph into independent and atomic facts. Format your response as a signle JSON object, a list of facts:\n\n{}"
prompt_af_template_llama3 = "Please breakdown the following paragraph into independent and atomic facts. Format your response in JSON as a list of 'fact' objects:\n\n{}"
# prompt_tf_template = "Given the context below, anwer the question that follows. Please format your answer in JSON with a yes or no determination and rationale for the determination. \n\nContext: {}\n\nQuestion: {} Is this claim true or false?"
# prompt_tf_template = "Given the context below, anwer the question that follows. Please format your answer in JSON with a yes or no determination and rationale for the determination. \n\nContext: {}\n\nQuestion: <{}> Is the previous claim (in between <> braces) true or false?"
prompt_tf_template = "Given the context below, anwer the question that follows. Please format your answer in JSON with a yes or no determination and rationale for the determination. \n\nContext: {}\n\nQuestion: <{}> Does the context explicitly support the previous claim (in between <> braces), true or false?"
def get_atoms_list(answer, file=None):
prompt_af = prompt_af_template_llama3.format(answer)
response, atoms_l = None, []
for _ in range(5):
try:
# response = octoai_client.chat.completions.create(
# model="meta-llama-3-70b-instruct",
# messages=[
# {"role": "system", "content": "You are a helpful assistant."},
# {"role": "user", "content": prompt_af}
# ],
# # response_format={"type": "json_object"},
# max_tokens=512,
# presence_penalty=0,
# temperature=0.1,
# top_p=0.9,
# )
response = octoai_client.chat.completions.create(
model="meta-llama-3-70b-instruct",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt_af}
],
# response_format={"type": "json_object"},
max_tokens=512,
presence_penalty=0,
temperature=0.1,
top_p=0.9,
)
content = response.choices[0].message.content
idx1 = content.find('```')
idx2 = idx1+3 + content[idx1+3:].find('```')
# atoms_l = json.loads(content[idx1+3:idx2])
atoms_l = parse_json_string(content[idx1+3:idx2])
atoms_l = [a['fact'] for a in atoms_l]
break
except Exception as error:
print(error, file=file)
print(response, file=file)
print(content[idx1+3:idx2], file=file)
time.sleep(2)
return atoms_l
def get_topk_matches(atom, k=5, pc_index=pc_256):
embed_atom = get_embedding(atom)
res = pc_index.query(vector=embed_atom, top_k=k, include_metadata=True)
return res['matches']
def get_match_atom_entailment_determination(_match, atom, file=None):
prompt_tf = prompt_tf_template.format(_match['metadata']['text'], atom)
response = None
chunk_determination = {}
chunk_determination['chunk_id'] = _match['id']
chunk_determination['true'] = False
for _ in range(5):
try:
response = octoai_client.chat.completions.create(
model="meta-llama-3-70b-instruct",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt_tf}
],
# response_format={"type": "json_object"},
max_tokens=512,
# presence_penalty=0,
temperature=0.1,
# top_p=0.9,
)
content = response.choices[0].message.content
idx1 = content.find('{')
idx2 = content.find('}')
chunk_determination.update(json.loads(content[idx1:idx2+1]))
_det_lower = chunk_determination['determination'].lower()
chunk_determination['true'] = "true" in _det_lower or "yes" in _det_lower
break
except Exception as error:
print(error, file=file)
print(prompt_tf, file=file)
print(response, file=file)
time.sleep(2)
return chunk_determination
def get_atom_support(atom, file=None):
topk_matches = get_topk_matches(atom)
atom_support = {}
for _match in topk_matches:
chunk_determination = atom_support.get(_match['metadata']['url'], {})
if not chunk_determination or not chunk_determination['true']:
atom_support[_match['metadata']['url']] = get_match_atom_entailment_determination(_match, atom, file=file)
return atom_support
def get_atom_support_list(atoms_l, file=None):
return [get_atom_support(a, file=file) for a in atoms_l]
def credit_atom_support_list(atom_support_l):
num_atoms = len(atom_support_l)
credit_d = defaultdict(float)
for atom_support in atom_support_l:
atom_support_size = 0.0
for url_determination_d in atom_support.values():
if url_determination_d['true']:
atom_support_size += 1.0
for url, url_determination_d in atom_support.items():
if url_determination_d['true']:
credit_d[url] += 1.0 / atom_support_size
for url in credit_d.keys():
credit_d[url] = credit_d[url] / num_atoms
return credit_d
def print_atom_support(atom_support, prefix='', file=None):
for url, chunk_determination in atom_support.items():
print(f"{prefix}{url}:", file=file)
print(f"{prefix} Determination: {'YES' if chunk_determination['true'] else 'NO'}", file=file)
print(f"{prefix} Rationale: {chunk_determination['rationale']}", file=file)
def print_credit_dist(credit_dist, prefix='', url_to_id=None, file=None):
credit_l = [(url, w) for url, w in credit_dist.items()]
credit_l = sorted(credit_l, key=lambda x: x[1], reverse=True)
for url, w in credit_l:
if url_to_id is None:
print(f"{prefix}{url}: {100*w:.2f}%", file=file)
else:
print(f"{prefix}{url_to_id[url]} {url}: {100*w:.2f}%", file=file)
# concurrent LLM calls
def get_atom_topk_matches_l_concurrent(atoms_l, max_workers=4):
atom_topkmatches_l = []
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = []
for atom in atoms_l:
futures.append(executor.submit(get_topk_matches, atom))
for f in futures:
r = f.result()
atom_topkmatches_l.append(r)
return atom_topkmatches_l
def aggregate_atom_topkmatches_l(atom_topkmatches_l):
atom_url_to_aggmacth_maps_l = []
for atom_topkmatches in atom_topkmatches_l:
atom_url_to_aggmatch_map = {}
atom_url_to_aggmacth_maps_l.append(atom_url_to_aggmatch_map)
for _match in atom_topkmatches:
if _match['metadata']['url'] not in atom_url_to_aggmatch_map:
match_copy = {}
match_copy['id'] = _match['id']
match_copy['id_l'] = [_match['id']]
match_copy['offset_l'] = [0]
match_copy['score'] = _match['score']
match_copy['values'] = _match['values']
# TODO: change to list of chunks and then append at query time
match_copy['metadata'] = {}
match_copy['metadata']['url'] = _match['metadata']['url']
match_copy['metadata']['chunk'] = _match['metadata']['chunk']
match_copy['metadata']['text'] = _match['metadata']['text']
match_copy['metadata']['title'] = _match['metadata']['title']
atom_url_to_aggmatch_map[_match['metadata']['url']] = match_copy
else:
prev_match = atom_url_to_aggmatch_map[_match['metadata']['url']]
prev_match['id_l'].append(_match['id'])
prev_match['offset_l'].append(len(prev_match['metadata']['text']))
prev_match['metadata']['text'] += f"\n\n{_match['metadata']['text']}"
atomidx_w_single_url_aggmatch_l = []
for idx, atom_url_to_aggmatch_map in enumerate(atom_url_to_aggmacth_maps_l):
for agg_match in atom_url_to_aggmatch_map.values():
atomidx_w_single_url_aggmatch_l.append((idx, agg_match))
return atomidx_w_single_url_aggmatch_l
def get_atmom_support_l_from_atomidx_w_single_url_aggmatch_l_concurrent(atoms_l, atomidx_w_single_url_aggmatch_l, max_workers=4):
atom_support_l = [{} for _ in atoms_l]
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = []
for atomidx_w_single_url_aggmatch in atomidx_w_single_url_aggmatch_l:
futures.append(executor.submit(
get_match_atom_entailment_determination,
atomidx_w_single_url_aggmatch[1],
atoms_l[atomidx_w_single_url_aggmatch[0]],
)
)
for f, atomidx_w_single_url_aggmatch in zip(futures, atomidx_w_single_url_aggmatch_l):
aggmatch_determination = f.result()
atom_support = atom_support_l[atomidx_w_single_url_aggmatch[0]]
atom_support[atomidx_w_single_url_aggmatch[1]['metadata']['url']] = aggmatch_determination
return atom_support_l
style_str = """
<style>
.doc-title {
/* font-family: cursive, sans-serif; */
font-family: Optima, sans-serif;
width: 100%;
display: inline-block;
font-size: 2em;
font-weight: bolder;
padding-top: 20px;
/* font-style: italic; */
}
.doc-url {
/* font-family: cursive, sans-serif; */
font-size: 1em;
padding-left: 40px;
padding-bottom: 10px;
/* font-weight: bolder; */
/* font-style: italic; */
}
.doc-text {
/* font-family: cursive, sans-serif; */
font-family: Optima, sans-serif;
font-size: 1.5em;
white-space: pre-wrap;
padding-left: 40px;
padding-bottom: 20px;
/* font-weight: bolder; */
/* font-style: italic; */
}
.doc-text .chunk-separator {
/* font-style: italic; */
color: #0000FF;
}
.doc-title > img {
width: 22px;
height: 22px;
border-radius: 50%;
overflow: hidden;
background-color: transparent;
display: inline-block;
vertical-align: middle;
}
.doc-title > score {
font-family: Optima, sans-serif;
font-weight: normal;
float: right;
}
</style>
"""
|