chat_w_corpus / app.py
abnerguzman's picture
Update app.py
31c985b verified
raw
history blame
3.19 kB
import os
import octoai
octoai_client = octoai.client.Client(token=os.getenv('OCTOML_KEY'))
from pinecone import Pinecone, ServerlessSpec
pc = Pinecone(api_key=os.getenv('PINECONE_API_KEY'))
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.core.response.pprint_utils import pprint_source_node
from llama_index.llms.octoai import OctoAI
octoai = OctoAI(
token=os.getenv('OCTOML_KEY'),
model="meta-llama-3-70b-instruct",
max_tokens=512,
temperature=0.1,
)
from llama_index.core.memory import ChatMemoryBuffer
import gradio as gr
from io import StringIO
import util as cu
def get_credit_dist(history):
atoms_l = cu.sentence_splitter.split_text(history[-1][1])
atoms_l = list(filter(lambda x: len(x) > 50, atoms_l))
atom_topkmatches_l = cu.get_atom_topk_matches_l_concurrent(atoms_l, max_workers=8)
atomidx_w_single_url_aggmatch_l = cu.aggregate_atom_topkmatches_l(atom_topkmatches_l)
atom_support_l = cu.get_atmom_support_l_from_atomidx_w_single_url_aggmatch_l_concurrent(atoms_l, atomidx_w_single_url_aggmatch_l, max_workers=8)
credit_dist = cu.credit_atom_support_list(atom_support_l)
_out = StringIO()
print(f"Credit distribution to sources:\n", file=_out)
cu.print_credit_dist(credit_dist, prefix=' ', url_to_id=None, file=_out)
print(file=_out)
print(f"Per claim support:\n", file=_out)
for j, atom_support in enumerate(atom_support_l):
print(f" Claim {j+1}: \"{atoms_l[j]}\"\n", file=_out)
cu.print_atom_support(atom_support, prefix=' ', file=_out)
print(file=_out)
return _out.getvalue()
with gr.Blocks() as demo:
chatbot = gr.Chatbot(height=800)
msg = gr.Textbox()
clear = gr.Button("Clear")
credit_box = gr.Textbox(label="Credit distribution", lines=20, autoscroll=False)
credit_btn = gr.Button("Credit response")
def get_chat_engine():
vector_store = PineconeVectorStore(pinecone_index=pc.Index('prorata-postman-ds-256'))
vindex = VectorStoreIndex.from_vector_store(vector_store)
memory = ChatMemoryBuffer.from_defaults(token_limit=5000)
return vindex.as_chat_engine(
chat_mode="context",
llm=octoai,
memory=memory,
system_prompt="You are a chatbot, able to have normal interactions, as well as talk about news events provided in the context of the conversation.",
)
chat_engine_var = gr.State(get_chat_engine)
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, chat_engine):
response = chat_engine.stream_chat(history[-1][0])
history[-1][1] = ""
for token in response.response_gen:
history[-1][1] += token
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, [chatbot, chat_engine_var], chatbot)
clear.click(lambda x: x.reset(), chat_engine_var, chatbot, queue=False)
credit_btn.click(get_credit_dist, chatbot, credit_box)
if __name__ == "__main__":
demo.queue()
demo.launch()