Spaces:
Sleeping
Sleeping
import os | |
import octoai | |
octoai_client = octoai.client.Client(token=os.getenv('OCTOML_KEY')) | |
from pinecone import Pinecone, ServerlessSpec | |
pc = Pinecone(api_key=os.getenv('PINECONE_API_KEY')) | |
from llama_index.vector_stores.pinecone import PineconeVectorStore | |
from llama_index.core import VectorStoreIndex | |
from llama_index.core.response.pprint_utils import pprint_source_node | |
from llama_index.llms.octoai import OctoAI | |
octoai = OctoAI( | |
token=os.getenv('OCTOML_KEY'), | |
model="meta-llama-3-70b-instruct", | |
max_tokens=512, | |
temperature=0.1, | |
) | |
from llama_index.core.memory import ChatMemoryBuffer | |
import gradio as gr | |
from io import StringIO | |
import util as cu | |
def get_credit_dist(history): | |
atoms_l = cu.sentence_splitter.split_text(history[-1][1]) | |
atoms_l = list(filter(lambda x: len(x) > 50, atoms_l)) | |
atom_topkmatches_l = cu.get_atom_topk_matches_l_concurrent(atoms_l, max_workers=8) | |
atomidx_w_single_url_aggmatch_l = cu.aggregate_atom_topkmatches_l(atom_topkmatches_l) | |
atom_support_l = cu.get_atmom_support_l_from_atomidx_w_single_url_aggmatch_l_concurrent(atoms_l, atomidx_w_single_url_aggmatch_l, max_workers=8) | |
credit_dist = cu.credit_atom_support_list(atom_support_l) | |
_out = StringIO() | |
print(f"Credit distribution to sources:\n", file=_out) | |
cu.print_credit_dist(credit_dist, prefix=' ', url_to_id=None, file=_out) | |
print(file=_out) | |
print(f"Per claim support:\n", file=_out) | |
for j, atom_support in enumerate(atom_support_l): | |
print(f" Claim {j+1}: \"{atoms_l[j]}\"\n", file=_out) | |
cu.print_atom_support(atom_support, prefix=' ', file=_out) | |
print(file=_out) | |
return _out.getvalue() | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot(height=800) | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
credit_box = gr.Textbox(label="Credit distribution", lines=20, autoscroll=False) | |
credit_btn = gr.Button("Credit response") | |
def get_chat_engine(): | |
vector_store = PineconeVectorStore(pinecone_index=pc.Index('prorata-postman-ds-256')) | |
vindex = VectorStoreIndex.from_vector_store(vector_store) | |
memory = ChatMemoryBuffer.from_defaults(token_limit=5000) | |
return vindex.as_chat_engine( | |
chat_mode="context", | |
llm=octoai, | |
memory=memory, | |
system_prompt="You are a chatbot, able to have normal interactions, as well as talk about news events provided in the context of the conversation.", | |
) | |
chat_engine_var = gr.State(get_chat_engine) | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def bot(history, chat_engine): | |
response = chat_engine.stream_chat(history[-1][0]) | |
history[-1][1] = "" | |
for token in response.response_gen: | |
history[-1][1] += token | |
yield history | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, [chatbot, chat_engine_var], chatbot) | |
clear.click(lambda x: x.reset(), chat_engine_var, chatbot, queue=False) | |
credit_btn.click(get_credit_dist, chatbot, credit_box) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch() | |