Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from diffusers import StableDiffusionInpaintPipeline | |
from PIL import Image | |
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator | |
from diffusers import ControlNetModel | |
from diffusers import UniPCMultistepScheduler | |
from controlnet_inpaint import StableDiffusionControlNetInpaintPipeline | |
import colorsys | |
sam_checkpoint = "sam_vit_h_4b8939.pth" | |
model_type = "vit_h" | |
device = "cpu" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
sam.to(device=device) | |
predictor = SamPredictor(sam) | |
mask_generator = SamAutomaticMaskGenerator(sam) | |
# pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
# "stabilityai/stable-diffusion-2-inpainting", | |
# torch_dtype=torch.float16, | |
# ) | |
# pipe = pipe.to("cuda") | |
controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-seg", | |
torch_dtype=torch.float16, | |
) | |
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
#pipe.enable_model_cpu_offload() | |
#pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
with gr.Blocks() as demo: | |
gr.Markdown("# StableSAM: Stable Diffusion + Segment Anything Model") | |
gr.Markdown( | |
""" | |
To try the demo, upload an image and select object(s) you want to inpaint. | |
Write a prompt & a negative prompt to control the inpainting. | |
Click on the "Submit" button to inpaint the selected object(s). | |
Check "Background" to inpaint the background instead of the selected object(s). | |
If the demo is slow, clone the space to your own HF account and run on a GPU. | |
""" | |
) | |
selected_pixels = gr.State([]) | |
with gr.Row(): | |
input_img = gr.Image(label="Input") | |
mask_img = gr.Image(label="Mask", interactive=False) | |
seg_img = gr.Image(label="Segmentation", interactive=False) | |
output_img = gr.Image(label="Output", interactive=False) | |
with gr.Row(): | |
prompt_text = gr.Textbox(lines=1, label="Prompt") | |
negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt") | |
is_background = gr.Checkbox(label="Background") | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
clear = gr.Button("Clear") | |
def generate_mask(image, bg, sel_pix, evt: gr.SelectData): | |
sel_pix.append(evt.index) | |
predictor.set_image(image) | |
input_point = np.array(sel_pix) | |
input_label = np.ones(input_point.shape[0]) | |
mask, _, _ = predictor.predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
multimask_output=False, | |
) | |
# clear torch cache | |
torch.cuda.empty_cache() | |
if bg: | |
mask = np.logical_not(mask) | |
mask = Image.fromarray(mask[0, :, :]) | |
segs = mask_generator.generate(image) | |
boolean_masks = [s["segmentation"] for s in segs] | |
finseg = np.zeros((boolean_masks[0].shape[0], boolean_masks[0].shape[1], 3), dtype=np.uint8) | |
# Loop over the boolean masks and assign a unique color to each class | |
for class_id, boolean_mask in enumerate(boolean_masks): | |
hue = class_id * 1.0 / len(boolean_masks) | |
rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(hue, 1, 1)) | |
rgb_mask = np.zeros((boolean_mask.shape[0], boolean_mask.shape[1], 3), dtype=np.uint8) | |
rgb_mask[:, :, 0] = boolean_mask * rgb[0] | |
rgb_mask[:, :, 1] = boolean_mask * rgb[1] | |
rgb_mask[:, :, 2] = boolean_mask * rgb[2] | |
finseg += rgb_mask | |
torch.cuda.empty_cache() | |
return mask, finseg | |
def inpaint(image, mask, seg_img, prompt, negative_prompt): | |
image = Image.fromarray(image) | |
mask = Image.fromarray(mask) | |
seg_img = Image.fromarray(seg_img) | |
image = image.resize((512, 512)) | |
mask = mask.resize((512, 512)) | |
seg_img = seg_img.resize((512, 512)) | |
output = pipe( | |
prompt, | |
image, | |
mask, | |
seg_img, | |
negative_prompt=negative_prompt, | |
num_inference_steps=20, | |
).images[0] | |
torch.cuda.empty_cache() | |
return output | |
def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg): | |
sel_pix = [] | |
img = None | |
mask = None | |
seg = None | |
out = None | |
prompt = "" | |
neg_prompt = "" | |
bg = False | |
return img, mask, seg, out, prompt, neg_prompt, bg | |
input_img.select( | |
generate_mask, | |
[input_img, is_background, selected_pixels], | |
[mask_img, seg_img], | |
) | |
submit.click( | |
inpaint, | |
inputs=[input_img, mask_img, seg_img, prompt_text, negative_prompt_text], | |
outputs=[output_img], | |
) | |
clear.click( | |
_clear, | |
inputs=[ | |
selected_pixels, | |
input_img, | |
mask_img, | |
seg_img, | |
output_img, | |
prompt_text, | |
negative_prompt_text, | |
is_background, | |
], | |
outputs=[ | |
input_img, | |
mask_img, | |
seg_img, | |
output_img, | |
prompt_text, | |
negative_prompt_text, | |
is_background, | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |