abhi227070
commited on
Commit
•
70f1dd6
1
Parent(s):
a13b0da
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,55 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def question_answering(context, question):
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
return output['answer'], str(output['score'] * 100)
|
14 |
|
15 |
iface = gr.Interface(
|
16 |
fn = question_answering,
|
@@ -24,4 +63,4 @@ iface = gr.Interface(
|
|
24 |
]
|
25 |
)
|
26 |
|
27 |
-
iface.launch(
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
# Method 1
|
4 |
+
# from transformers import pipeline
|
5 |
+
# question_answer = pipeline('question-answering',model = 'distilbert/distilbert-base-cased-distilled-squad')
|
6 |
+
|
7 |
+
# def question_answering(context, question):
|
8 |
+
|
9 |
+
# output = question_answer({
|
10 |
+
# 'context': context,
|
11 |
+
# 'question': question
|
12 |
+
# })
|
13 |
+
|
14 |
+
# return output['answer'], str(output['score'] * 100)
|
15 |
+
|
16 |
+
|
17 |
+
# Method 2
|
18 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-cased-distilled-squad")
|
23 |
+
model = AutoModelForQuestionAnswering.from_pretrained("distilbert/distilbert-base-cased-distilled-squad")
|
24 |
|
25 |
def question_answering(context, question):
|
26 |
|
27 |
+
inputs = tokenizer.encode_plus(question, context, return_tensors="pt")
|
28 |
+
|
29 |
+
# Get input IDs and attention mask
|
30 |
+
input_ids = inputs["input_ids"].tolist()[0]
|
31 |
+
|
32 |
+
# Perform inference to get the start and end logits
|
33 |
+
outputs = model(**inputs)
|
34 |
+
start_logits = outputs.start_logits
|
35 |
+
end_logits = outputs.end_logits
|
36 |
+
|
37 |
+
# Get the most likely beginning and end of answer with the argmax of the logits
|
38 |
+
start_index = torch.argmax(start_logits)
|
39 |
+
end_index = torch.argmax(end_logits) + 1
|
40 |
+
|
41 |
+
# Apply softmax to get probabilities
|
42 |
+
start_probs = F.softmax(start_logits, dim=-1)
|
43 |
+
end_probs = F.softmax(end_logits, dim=-1)
|
44 |
+
|
45 |
+
# Convert token IDs of the answer span back to text
|
46 |
+
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[start_index:end_index]))
|
47 |
+
|
48 |
+
# Calculate the confidence score
|
49 |
+
confidence_score = start_probs[0][start_index].item() * end_probs[0][end_index-1].item()
|
50 |
+
|
51 |
+
return answer, str(confidence_score * 100)
|
52 |
|
|
|
53 |
|
54 |
iface = gr.Interface(
|
55 |
fn = question_answering,
|
|
|
63 |
]
|
64 |
)
|
65 |
|
66 |
+
iface.launch()
|