File size: 3,917 Bytes
6dc2db5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d75a844
 
 
 
 
 
 
 
6dc2db5
d75a844
 
 
 
 
 
 
 
 
 
6dc2db5
d75a844
 
 
 
 
 
 
6dc2db5
d75a844
 
 
 
 
 
 
 
6dc2db5
d75a844
 
 
 
 
 
 
 
 
 
 
6dc2db5
 
d75a844
 
 
 
 
 
 
6dc2db5
 
 
 
 
 
 
 
 
 
d75a844
6dc2db5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import fire
import json
import pandas as pd
import pickle


def main(
        model_info_file: str,
        elo_rating_pkl: str,
        output_csv: str
):
    model_info = json.load(open(model_info_file))

    with open(elo_rating_pkl, "rb") as fin:
        elo_rating_results = pickle.load(fin)

    # Model, Dim Elo rating (anony), Arena Elo rating (anony), Link, Orgnization
    model_ratings = model_info
    fields = ["key", "Model"]
    for dim, dim_results in elo_rating_results.items():
        anony_elo_rating_results = dim_results["anony"]
        full_elo_rating_results = dim_results["full"]
        anony_leaderboard_data = anony_elo_rating_results["leaderboard_table_df"]
        full_leaderboard_data = full_elo_rating_results["leaderboard_table_df"]

        fields += [f"{dim} Elo rating"]
        all_models = anony_leaderboard_data.index.tolist()
        for model in all_models:
            if not model in model_ratings:
                # set Organization and license to empty
                model_ratings[model] = {}
                model_ratings[model]["Organization"] = "N/A"
                model_ratings[model]["Link"] = "N/A"
            model_ratings[model]["Model"] = model
            model_ratings[model]["key"] = model

            if model in anony_leaderboard_data.index:
                model_ratings[model][f"{dim} Elo rating"] = anony_leaderboard_data.loc[model, "rating"]
            else:
                model_ratings[model][f"{dim} Elo rating"] = 0
            if "Arena Elo rating" not in model_ratings[model].keys():
                model_ratings[model]["Arena Elo rating"] = 0
            model_ratings[model]["Arena Elo rating"] += model_ratings[model][f"{dim} Elo rating"]

            ## Anony
            # if model in anony_leaderboard_data.index:
            #     model_ratings[model][f"{dim} Elo rating (anony)"] = anony_leaderboard_data.loc[model, "rating"]
            # else:
            #     model_ratings[model][f"{dim} Elo rating (anony)"] = 0
            # if "Arena Elo rating (anony)" not in model_ratings[model].keys():
            #     model_ratings[model]["Arena Elo rating (anony)"] = 0
            # model_ratings[model]["Arena Elo rating (anony)"] += model_ratings[model][f"{dim} Elo rating (anony)"]

            ## Anony + Named
            # if model in full_elo_rating_results["leaderboard_table_df"].index:
            #     model_ratings[model][f"{dim} Elo rating (full)"] = full_leaderboard_data.loc[model, "rating"]
            # else:
            #     model_ratings[model][f"{dim} Elo rating (full)"] = 0
            # if "Arena Elo rating (full)" not in model_ratings[model].keys():
            #     model_ratings[model]["Arena Elo rating (full)"] = 0
            # model_ratings[model]["Arena Elo rating (full)"] += model_ratings[model][f"{dim} Elo rating (full)"]
            
    fields += ["Arena Elo rating", "Link", "Organization"]
    # fields += ["Arena Elo rating (anony)", "Arena Elo rating (full)", "Link", "Organization"]

    final_model_info = {}
    print(model_ratings)
    for model in model_ratings:
        if "Model" in model_ratings[model]:
            # model_ratings[model]["Arena Elo rating (anony)"] /= 5
            # model_ratings[model]["Arena Elo rating (full)"] /= 5
            model_ratings[model]["Arena Elo rating"] /= 5
            final_model_info[model] = model_ratings[model]
    model_info = final_model_info

    exclude_keys = ['starting_from']
    for key in exclude_keys:
        for model in model_info:
            if key in model_info[model]:
                del model_info[model][key]
    df = pd.DataFrame(model_info).T
    df = df[fields]
    # sort by anony rating
    df = df.sort_values(by=["Arena Elo rating"], ascending=False)
    df.to_csv(output_csv, index=False)
    print("Leaderboard data saved to", output_csv)
    print(df)


if __name__ == "__main__":
    fire.Fire(main)