|
import librosa |
|
import numpy as np |
|
from pycwt import wavelet |
|
from scipy.interpolate import interp1d |
|
|
|
|
|
def load_wav(wav_file, sr): |
|
wav, _ = librosa.load(wav_file, sr=sr, mono=True) |
|
return wav |
|
|
|
|
|
def convert_continuos_f0(f0): |
|
'''CONVERT F0 TO CONTINUOUS F0 |
|
Args: |
|
f0 (ndarray): original f0 sequence with the shape (T) |
|
Return: |
|
(ndarray): continuous f0 with the shape (T) |
|
''' |
|
|
|
f0 = np.copy(f0) |
|
uv = np.float32(f0 != 0) |
|
|
|
|
|
if (f0 == 0).all(): |
|
print("| all of the f0 values are 0.") |
|
return uv, f0 |
|
start_f0 = f0[f0 != 0][0] |
|
end_f0 = f0[f0 != 0][-1] |
|
|
|
|
|
start_idx = np.where(f0 == start_f0)[0][0] |
|
end_idx = np.where(f0 == end_f0)[0][-1] |
|
f0[:start_idx] = start_f0 |
|
f0[end_idx:] = end_f0 |
|
|
|
|
|
nz_frames = np.where(f0 != 0)[0] |
|
|
|
|
|
f = interp1d(nz_frames, f0[nz_frames]) |
|
cont_f0 = f(np.arange(0, f0.shape[0])) |
|
|
|
return uv, cont_f0 |
|
|
|
|
|
def get_cont_lf0(f0, frame_period=5.0): |
|
uv, cont_f0_lpf = convert_continuos_f0(f0) |
|
|
|
cont_lf0_lpf = np.log(cont_f0_lpf) |
|
return uv, cont_lf0_lpf |
|
|
|
|
|
def get_lf0_cwt(lf0): |
|
''' |
|
input: |
|
signal of shape (N) |
|
output: |
|
Wavelet_lf0 of shape(10, N), scales of shape(10) |
|
''' |
|
mother = wavelet.MexicanHat() |
|
dt = 0.005 |
|
dj = 1 |
|
s0 = dt * 2 |
|
J = 9 |
|
|
|
Wavelet_lf0, scales, _, _, _, _ = wavelet.cwt(np.squeeze(lf0), dt, dj, s0, J, mother) |
|
|
|
Wavelet_lf0 = np.real(Wavelet_lf0).T |
|
return Wavelet_lf0, scales |
|
|
|
|
|
def norm_scale(Wavelet_lf0): |
|
Wavelet_lf0_norm = np.zeros((Wavelet_lf0.shape[0], Wavelet_lf0.shape[1])) |
|
mean = Wavelet_lf0.mean(0)[None, :] |
|
std = Wavelet_lf0.std(0)[None, :] |
|
Wavelet_lf0_norm = (Wavelet_lf0 - mean) / std |
|
return Wavelet_lf0_norm, mean, std |
|
|
|
|
|
def normalize_cwt_lf0(f0, mean, std): |
|
uv, cont_lf0_lpf = get_cont_lf0(f0) |
|
cont_lf0_norm = (cont_lf0_lpf - mean) / std |
|
Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_norm) |
|
Wavelet_lf0_norm, _, _ = norm_scale(Wavelet_lf0) |
|
|
|
return Wavelet_lf0_norm |
|
|
|
|
|
def get_lf0_cwt_norm(f0s, mean, std): |
|
uvs = list() |
|
cont_lf0_lpfs = list() |
|
cont_lf0_lpf_norms = list() |
|
Wavelet_lf0s = list() |
|
Wavelet_lf0s_norm = list() |
|
scaless = list() |
|
|
|
means = list() |
|
stds = list() |
|
for f0 in f0s: |
|
uv, cont_lf0_lpf = get_cont_lf0(f0) |
|
cont_lf0_lpf_norm = (cont_lf0_lpf - mean) / std |
|
|
|
Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm) |
|
Wavelet_lf0_norm, mean_scale, std_scale = norm_scale(Wavelet_lf0) |
|
|
|
Wavelet_lf0s_norm.append(Wavelet_lf0_norm) |
|
uvs.append(uv) |
|
cont_lf0_lpfs.append(cont_lf0_lpf) |
|
cont_lf0_lpf_norms.append(cont_lf0_lpf_norm) |
|
Wavelet_lf0s.append(Wavelet_lf0) |
|
scaless.append(scales) |
|
means.append(mean_scale) |
|
stds.append(std_scale) |
|
|
|
return Wavelet_lf0s_norm, scaless, means, stds |
|
|
|
|
|
def inverse_cwt_torch(Wavelet_lf0, scales): |
|
import torch |
|
b = ((torch.arange(0, len(scales)).float().to(Wavelet_lf0.device)[None, None, :] + 1 + 2.5) ** (-2.5)) |
|
lf0_rec = Wavelet_lf0 * b |
|
lf0_rec_sum = lf0_rec.sum(-1) |
|
lf0_rec_sum = (lf0_rec_sum - lf0_rec_sum.mean(-1, keepdim=True)) / lf0_rec_sum.std(-1, keepdim=True) |
|
return lf0_rec_sum |
|
|
|
|
|
def inverse_cwt(Wavelet_lf0, scales): |
|
b = ((np.arange(0, len(scales))[None, None, :] + 1 + 2.5) ** (-2.5)) |
|
lf0_rec = Wavelet_lf0 * b |
|
lf0_rec_sum = lf0_rec.sum(-1) |
|
lf0_rec_sum = (lf0_rec_sum - lf0_rec_sum.mean(-1, keepdims=True)) / lf0_rec_sum.std(-1, keepdims=True) |
|
return lf0_rec_sum |
|
|
|
|
|
def cwt2f0(cwt_spec, mean, std, cwt_scales): |
|
assert len(mean.shape) == 1 and len(std.shape) == 1 and len(cwt_spec.shape) == 3 |
|
import torch |
|
if isinstance(cwt_spec, torch.Tensor): |
|
f0 = inverse_cwt_torch(cwt_spec, cwt_scales) |
|
f0 = f0 * std[:, None] + mean[:, None] |
|
f0 = f0.exp() |
|
else: |
|
f0 = inverse_cwt(cwt_spec, cwt_scales) |
|
f0 = f0 * std[:, None] + mean[:, None] |
|
f0 = np.exp(f0) |
|
return f0 |
|
|