|
|
|
|
|
"""Residual block module in WaveNet. |
|
|
|
This code is modified from https://github.com/r9y9/wavenet_vocoder. |
|
|
|
""" |
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
class Conv1d(torch.nn.Conv1d): |
|
"""Conv1d module with customized initialization.""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
"""Initialize Conv1d module.""" |
|
super(Conv1d, self).__init__(*args, **kwargs) |
|
|
|
def reset_parameters(self): |
|
"""Reset parameters.""" |
|
torch.nn.init.kaiming_normal_(self.weight, nonlinearity="relu") |
|
if self.bias is not None: |
|
torch.nn.init.constant_(self.bias, 0.0) |
|
|
|
|
|
class Conv1d1x1(Conv1d): |
|
"""1x1 Conv1d with customized initialization.""" |
|
|
|
def __init__(self, in_channels, out_channels, bias): |
|
"""Initialize 1x1 Conv1d module.""" |
|
super(Conv1d1x1, self).__init__(in_channels, out_channels, |
|
kernel_size=1, padding=0, |
|
dilation=1, bias=bias) |
|
|
|
|
|
class ResidualBlock(torch.nn.Module): |
|
"""Residual block module in WaveNet.""" |
|
|
|
def __init__(self, |
|
kernel_size=3, |
|
residual_channels=64, |
|
gate_channels=128, |
|
skip_channels=64, |
|
aux_channels=80, |
|
dropout=0.0, |
|
dilation=1, |
|
bias=True, |
|
use_causal_conv=False |
|
): |
|
"""Initialize ResidualBlock module. |
|
|
|
Args: |
|
kernel_size (int): Kernel size of dilation convolution layer. |
|
residual_channels (int): Number of channels for residual connection. |
|
skip_channels (int): Number of channels for skip connection. |
|
aux_channels (int): Local conditioning channels i.e. auxiliary input dimension. |
|
dropout (float): Dropout probability. |
|
dilation (int): Dilation factor. |
|
bias (bool): Whether to add bias parameter in convolution layers. |
|
use_causal_conv (bool): Whether to use use_causal_conv or non-use_causal_conv convolution. |
|
|
|
""" |
|
super(ResidualBlock, self).__init__() |
|
self.dropout = dropout |
|
|
|
if use_causal_conv: |
|
padding = (kernel_size - 1) * dilation |
|
else: |
|
assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." |
|
padding = (kernel_size - 1) // 2 * dilation |
|
self.use_causal_conv = use_causal_conv |
|
|
|
|
|
self.conv = Conv1d(residual_channels, gate_channels, kernel_size, |
|
padding=padding, dilation=dilation, bias=bias) |
|
|
|
|
|
if aux_channels > 0: |
|
self.conv1x1_aux = Conv1d1x1(aux_channels, gate_channels, bias=False) |
|
else: |
|
self.conv1x1_aux = None |
|
|
|
|
|
gate_out_channels = gate_channels // 2 |
|
self.conv1x1_out = Conv1d1x1(gate_out_channels, residual_channels, bias=bias) |
|
self.conv1x1_skip = Conv1d1x1(gate_out_channels, skip_channels, bias=bias) |
|
|
|
def forward(self, x, c): |
|
"""Calculate forward propagation. |
|
|
|
Args: |
|
x (Tensor): Input tensor (B, residual_channels, T). |
|
c (Tensor): Local conditioning auxiliary tensor (B, aux_channels, T). |
|
|
|
Returns: |
|
Tensor: Output tensor for residual connection (B, residual_channels, T). |
|
Tensor: Output tensor for skip connection (B, skip_channels, T). |
|
|
|
""" |
|
residual = x |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = self.conv(x) |
|
|
|
|
|
x = x[:, :, :residual.size(-1)] if self.use_causal_conv else x |
|
|
|
|
|
splitdim = 1 |
|
xa, xb = x.split(x.size(splitdim) // 2, dim=splitdim) |
|
|
|
|
|
if c is not None: |
|
assert self.conv1x1_aux is not None |
|
c = self.conv1x1_aux(c) |
|
ca, cb = c.split(c.size(splitdim) // 2, dim=splitdim) |
|
xa, xb = xa + ca, xb + cb |
|
|
|
x = torch.tanh(xa) * torch.sigmoid(xb) |
|
|
|
|
|
s = self.conv1x1_skip(x) |
|
|
|
|
|
x = (self.conv1x1_out(x) + residual) * math.sqrt(0.5) |
|
|
|
return x, s |
|
|