|
import io |
|
import logging |
|
|
|
import librosa |
|
import soundfile |
|
from flask import Flask, request, send_file |
|
from flask_cors import CORS |
|
|
|
from infer_tools.infer_tool import Svc |
|
from utils.hparams import hparams |
|
|
|
app = Flask(__name__) |
|
|
|
CORS(app) |
|
|
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
|
|
|
|
@app.route("/voiceChangeModel", methods=["POST"]) |
|
def voice_change_model(): |
|
request_form = request.form |
|
wave_file = request.files.get("sample", None) |
|
|
|
f_pitch_change = float(request_form.get("fPitchChange", 0)) |
|
|
|
daw_sample = int(float(request_form.get("sampleRate", 0))) |
|
speaker_id = int(float(request_form.get("sSpeakId", 0))) |
|
|
|
input_wav_path = io.BytesIO(wave_file.read()) |
|
|
|
_f0_tst, _f0_pred, _audio = model.infer(input_wav_path, key=f_pitch_change, acc=accelerate, use_pe=False, |
|
use_crepe=False) |
|
tar_audio = librosa.resample(_audio, hparams["audio_sample_rate"], daw_sample) |
|
|
|
out_wav_path = io.BytesIO() |
|
soundfile.write(out_wav_path, tar_audio, daw_sample, format="wav") |
|
out_wav_path.seek(0) |
|
return send_file(out_wav_path, download_name="temp.wav", as_attachment=True) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
project_name = "firefox" |
|
model_path = f'./checkpoints/{project_name}/model_ckpt_steps_188000.ckpt' |
|
config_path = f'./checkpoints/{project_name}/config.yaml' |
|
|
|
|
|
accelerate = 50 |
|
hubert_gpu = True |
|
|
|
model = Svc(project_name, config_path, hubert_gpu, model_path) |
|
|
|
|
|
app.run(port=6842, host="0.0.0.0", debug=False, threaded=False) |
|
|