File size: 13,021 Bytes
4c9fe71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import hashlib
import json
import os
import time
from io import BytesIO
from pathlib import Path
import librosa
import numpy as np
import soundfile
import torch
import utils
from modules.fastspeech.pe import PitchExtractor
from network.diff.candidate_decoder import FFT
from network.diff.diffusion import GaussianDiffusion
from network.diff.net import DiffNet
from network.vocoders.base_vocoder import VOCODERS, get_vocoder_cls
from preprocessing.data_gen_utils import get_pitch_parselmouth, get_pitch_crepe, get_pitch_world
from preprocessing.hubertinfer import Hubertencoder
from utils.hparams import hparams, set_hparams
from utils.pitch_utils import denorm_f0, norm_interp_f0
if os.path.exists("chunks_temp.json"):
os.remove("chunks_temp.json")
def read_temp(file_name):
if not os.path.exists(file_name):
with open(file_name, "w") as f:
f.write(json.dumps({"info": "temp_dict"}))
return {}
else:
try:
with open(file_name, "r") as f:
data = f.read()
data_dict = json.loads(data)
if os.path.getsize(file_name) > 50 * 1024 * 1024:
f_name = file_name.split("/")[-1]
print(f"clean {f_name}")
for wav_hash in list(data_dict.keys()):
if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
del data_dict[wav_hash]
except Exception as e:
print(e)
print(f"{file_name} error,auto rebuild file")
data_dict = {"info": "temp_dict"}
return data_dict
f0_dict = read_temp("./infer_tools/f0_temp.json")
def write_temp(file_name, data):
with open(file_name, "w") as f:
f.write(json.dumps(data))
def timeit(func):
def run(*args, **kwargs):
t = time.time()
res = func(*args, **kwargs)
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
return res
return run
def format_wav(audio_path):
if Path(audio_path).suffix=='.wav':
return
raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True,sr=None)
soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
def fill_a_to_b(a, b):
if len(a) < len(b):
for _ in range(0, len(b) - len(a)):
a.append(a[0])
def get_end_file(dir_path, end):
file_lists = []
for root, dirs, files in os.walk(dir_path):
files = [f for f in files if f[0] != '.']
dirs[:] = [d for d in dirs if d[0] != '.']
for f_file in files:
if f_file.endswith(end):
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
return file_lists
def mkdir(paths: list):
for path in paths:
if not os.path.exists(path):
os.mkdir(path)
def get_md5(content):
return hashlib.new("md5", content).hexdigest()
class Svc:
def __init__(self, project_name, config_name, hubert_gpu, model_path):
self.project_name = project_name
self.DIFF_DECODERS = {
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']),
'fft': lambda hp: FFT(
hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']),
}
self.model_path = model_path
self.dev = torch.device("cuda")
self._ = set_hparams(config=config_name, exp_name=self.project_name, infer=True,
reset=True,
hparams_str='',
print_hparams=False)
self.mel_bins = hparams['audio_num_mel_bins']
self.model = GaussianDiffusion(
phone_encoder=Hubertencoder(hparams['hubert_path']),
out_dims=self.mel_bins, denoise_fn=self.DIFF_DECODERS[hparams['diff_decoder_type']](hparams),
timesteps=hparams['timesteps'],
K_step=hparams['K_step'],
loss_type=hparams['diff_loss_type'],
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'],
)
self.load_ckpt()
self.model.cuda()
hparams['hubert_gpu'] = hubert_gpu
self.hubert = Hubertencoder(hparams['hubert_path'])
self.pe = PitchExtractor().cuda()
utils.load_ckpt(self.pe, hparams['pe_ckpt'], 'model', strict=True)
self.pe.eval()
self.vocoder = get_vocoder_cls(hparams)()
def load_ckpt(self, model_name='model', force=True, strict=True):
utils.load_ckpt(self.model, self.model_path, model_name, force, strict)
def infer(self, in_path, key, acc, use_pe=True, use_crepe=True, thre=0.05, singer=False, **kwargs):
batch = self.pre(in_path, acc, use_crepe, thre)
spk_embed = batch.get('spk_embed') if not hparams['use_spk_id'] else batch.get('spk_ids')
hubert = batch['hubert']
ref_mels = batch["mels"]
energy=batch['energy']
mel2ph = batch['mel2ph']
batch['f0'] = batch['f0'] + (key / 12)
batch['f0'][batch['f0']>np.log2(hparams['f0_max'])]=0
f0 = batch['f0']
uv = batch['uv']
@timeit
def diff_infer():
outputs = self.model(
hubert.cuda(), spk_embed=spk_embed, mel2ph=mel2ph.cuda(), f0=f0.cuda(), uv=uv.cuda(),energy=energy.cuda(),
ref_mels=ref_mels.cuda(),
infer=True, **kwargs)
return outputs
outputs=diff_infer()
batch['outputs'] = self.model.out2mel(outputs['mel_out'])
batch['mel2ph_pred'] = outputs['mel2ph']
batch['f0_gt'] = denorm_f0(batch['f0'], batch['uv'], hparams)
if use_pe:
batch['f0_pred'] = self.pe(outputs['mel_out'])['f0_denorm_pred'].detach()
else:
batch['f0_pred'] = outputs.get('f0_denorm')
return self.after_infer(batch, singer, in_path)
@timeit
def after_infer(self, prediction, singer, in_path):
for k, v in prediction.items():
if type(v) is torch.Tensor:
prediction[k] = v.cpu().numpy()
# remove paddings
mel_gt = prediction["mels"]
mel_gt_mask = np.abs(mel_gt).sum(-1) > 0
mel_pred = prediction["outputs"]
mel_pred_mask = np.abs(mel_pred).sum(-1) > 0
mel_pred = mel_pred[mel_pred_mask]
mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax'])
f0_gt = prediction.get("f0_gt")
f0_pred = prediction.get("f0_pred")
if f0_pred is not None:
f0_gt = f0_gt[mel_gt_mask]
if len(f0_pred) > len(mel_pred_mask):
f0_pred = f0_pred[:len(mel_pred_mask)]
f0_pred = f0_pred[mel_pred_mask]
torch.cuda.is_available() and torch.cuda.empty_cache()
if singer:
data_path = in_path.replace("batch", "singer_data")
mel_path = data_path[:-4] + "_mel.npy"
f0_path = data_path[:-4] + "_f0.npy"
np.save(mel_path, mel_pred)
np.save(f0_path, f0_pred)
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
return f0_gt, f0_pred, wav_pred
def temporary_dict2processed_input(self, item_name, temp_dict, use_crepe=True, thre=0.05):
'''
process data in temporary_dicts
'''
binarization_args = hparams['binarization_args']
@timeit
def get_pitch(wav, mel):
# get ground truth f0 by self.get_pitch_algorithm
global f0_dict
if use_crepe:
md5 = get_md5(wav)
if f"{md5}_gt" in f0_dict.keys():
print("load temp crepe f0")
gt_f0 = np.array(f0_dict[f"{md5}_gt"]["f0"])
coarse_f0 = np.array(f0_dict[f"{md5}_coarse"]["f0"])
else:
torch.cuda.is_available() and torch.cuda.empty_cache()
gt_f0, coarse_f0 = get_pitch_crepe(wav, mel, hparams, thre)
f0_dict[f"{md5}_gt"] = {"f0": gt_f0.tolist(), "time": int(time.time())}
f0_dict[f"{md5}_coarse"] = {"f0": coarse_f0.tolist(), "time": int(time.time())}
write_temp("./infer_tools/f0_temp.json", f0_dict)
else:
md5 = get_md5(wav)
if f"{md5}_gt_harvest" in f0_dict.keys():
print("load temp harvest f0")
gt_f0 = np.array(f0_dict[f"{md5}_gt_harvest"]["f0"])
coarse_f0 = np.array(f0_dict[f"{md5}_coarse_harvest"]["f0"])
else:
gt_f0, coarse_f0 = get_pitch_world(wav, mel, hparams)
f0_dict[f"{md5}_gt_harvest"] = {"f0": gt_f0.tolist(), "time": int(time.time())}
f0_dict[f"{md5}_coarse_harvest"] = {"f0": coarse_f0.tolist(), "time": int(time.time())}
write_temp("./infer_tools/f0_temp.json", f0_dict)
processed_input['f0'] = gt_f0
processed_input['pitch'] = coarse_f0
def get_align(mel, phone_encoded):
mel2ph = np.zeros([mel.shape[0]], int)
start_frame = 0
ph_durs = mel.shape[0] / phone_encoded.shape[0]
if hparams['debug']:
print(mel.shape, phone_encoded.shape, mel.shape[0] / phone_encoded.shape[0])
for i_ph in range(phone_encoded.shape[0]):
end_frame = int(i_ph * ph_durs + ph_durs + 0.5)
mel2ph[start_frame:end_frame + 1] = i_ph + 1
start_frame = end_frame + 1
processed_input['mel2ph'] = mel2ph
if hparams['vocoder'] in VOCODERS:
wav, mel = VOCODERS[hparams['vocoder']].wav2spec(temp_dict['wav_fn'])
else:
wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(temp_dict['wav_fn'])
processed_input = {
'item_name': item_name, 'mel': mel,
'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]
}
processed_input = {**temp_dict, **processed_input} # merge two dicts
if binarization_args['with_f0']:
get_pitch(wav, mel)
if binarization_args['with_hubert']:
st = time.time()
hubert_encoded = processed_input['hubert'] = self.hubert.encode(temp_dict['wav_fn'])
et = time.time()
dev = 'cuda' if hparams['hubert_gpu'] and torch.cuda.is_available() else 'cpu'
print(f'hubert (on {dev}) time used {et - st}')
if binarization_args['with_align']:
get_align(mel, hubert_encoded)
return processed_input
def pre(self, wav_fn, accelerate, use_crepe=True, thre=0.05):
if isinstance(wav_fn, BytesIO):
item_name = self.project_name
else:
song_info = wav_fn.split('/')
item_name = song_info[-1].split('.')[-2]
temp_dict = {'wav_fn': wav_fn, 'spk_id': self.project_name}
temp_dict = self.temporary_dict2processed_input(item_name, temp_dict, use_crepe, thre)
hparams['pndm_speedup'] = accelerate
batch = processed_input2batch([getitem(temp_dict)])
return batch
def getitem(item):
max_frames = hparams['max_frames']
spec = torch.Tensor(item['mel'])[:max_frames]
energy = (spec.exp() ** 2).sum(-1).sqrt()
mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None
f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams)
hubert = torch.Tensor(item['hubert'][:hparams['max_input_tokens']])
pitch = torch.LongTensor(item.get("pitch"))[:max_frames]
sample = {
"item_name": item['item_name'],
"hubert": hubert,
"mel": spec,
"pitch": pitch,
"energy": energy,
"f0": f0,
"uv": uv,
"mel2ph": mel2ph,
"mel_nonpadding": spec.abs().sum(-1) > 0,
}
return sample
def processed_input2batch(samples):
'''
Args:
samples: one batch of processed_input
NOTE:
the batch size is controlled by hparams['max_sentences']
'''
if len(samples) == 0:
return {}
item_names = [s['item_name'] for s in samples]
hubert = utils.collate_2d([s['hubert'] for s in samples], 0.0)
f0 = utils.collate_1d([s['f0'] for s in samples], 0.0)
pitch = utils.collate_1d([s['pitch'] for s in samples])
uv = utils.collate_1d([s['uv'] for s in samples])
energy = utils.collate_1d([s['energy'] for s in samples], 0.0)
mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \
if samples[0]['mel2ph'] is not None else None
mels = utils.collate_2d([s['mel'] for s in samples], 0.0)
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])
batch = {
'item_name': item_names,
'nsamples': len(samples),
'hubert': hubert,
'mels': mels,
'mel_lengths': mel_lengths,
'mel2ph': mel2ph,
'energy': energy,
'pitch': pitch,
'f0': f0,
'uv': uv,
}
return batch
|