Yusin commited on
Commit
ba411b1
1 Parent(s): 2ae68b8

Upload 11 files

Browse files
Files changed (11) hide show
  1. 1374_epochs.pth +3 -0
  2. aa.ipynb +71 -0
  3. attentions.py +300 -0
  4. commons.py +97 -0
  5. config.py +17 -0
  6. infer.py +86 -0
  7. models.py +498 -0
  8. modules.py +387 -0
  9. transforms.py +193 -0
  10. utils.py +76 -0
  11. vits_api.py +26 -0
1374_epochs.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edfb6b428c398fab83a85b5ae41e13cb5a9f7be12692129e8a880d4553701f7b
3
+ size 158888013
aa.ipynb ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {
7
+ "collapsed": true
8
+ },
9
+ "outputs": [],
10
+ "source": [
11
+ "import torch"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": 3,
17
+ "outputs": [
18
+ {
19
+ "data": {
20
+ "text/plain": "tensor([1., 2., 3.], dtype=torch.float16)"
21
+ },
22
+ "execution_count": 3,
23
+ "metadata": {},
24
+ "output_type": "execute_result"
25
+ }
26
+ ],
27
+ "source": [
28
+ "torch.FloatTensor([1,2,3]).half()"
29
+ ],
30
+ "metadata": {
31
+ "collapsed": false,
32
+ "pycharm": {
33
+ "name": "#%%\n"
34
+ }
35
+ }
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "outputs": [],
41
+ "source": [],
42
+ "metadata": {
43
+ "collapsed": false,
44
+ "pycharm": {
45
+ "name": "#%%\n"
46
+ }
47
+ }
48
+ }
49
+ ],
50
+ "metadata": {
51
+ "kernelspec": {
52
+ "display_name": "Python 3",
53
+ "language": "python",
54
+ "name": "python3"
55
+ },
56
+ "language_info": {
57
+ "codemirror_mode": {
58
+ "name": "ipython",
59
+ "version": 2
60
+ },
61
+ "file_extension": ".py",
62
+ "mimetype": "text/x-python",
63
+ "name": "python",
64
+ "nbconvert_exporter": "python",
65
+ "pygments_lexer": "ipython2",
66
+ "version": "2.7.6"
67
+ }
68
+ },
69
+ "nbformat": 4,
70
+ "nbformat_minor": 0
71
+ }
attentions.py ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ import commons
7
+ from modules import LayerNorm
8
+
9
+
10
+ class Encoder(nn.Module):
11
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
12
+ super().__init__()
13
+ self.hidden_channels = hidden_channels
14
+ self.filter_channels = filter_channels
15
+ self.n_heads = n_heads
16
+ self.n_layers = n_layers
17
+ self.kernel_size = kernel_size
18
+ self.p_dropout = p_dropout
19
+ self.window_size = window_size
20
+
21
+ self.drop = nn.Dropout(p_dropout)
22
+ self.attn_layers = nn.ModuleList()
23
+ self.norm_layers_1 = nn.ModuleList()
24
+ self.ffn_layers = nn.ModuleList()
25
+ self.norm_layers_2 = nn.ModuleList()
26
+ for i in range(self.n_layers):
27
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
28
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
29
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
30
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
31
+
32
+ def forward(self, x, x_mask):
33
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
34
+ x = x * x_mask
35
+ for i in range(self.n_layers):
36
+ y = self.attn_layers[i](x, x, attn_mask)
37
+ y = self.drop(y)
38
+ x = self.norm_layers_1[i](x + y)
39
+
40
+ y = self.ffn_layers[i](x, x_mask)
41
+ y = self.drop(y)
42
+ x = self.norm_layers_2[i](x + y)
43
+ x = x * x_mask
44
+ return x
45
+
46
+
47
+ class Decoder(nn.Module):
48
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
49
+ super().__init__()
50
+ self.hidden_channels = hidden_channels
51
+ self.filter_channels = filter_channels
52
+ self.n_heads = n_heads
53
+ self.n_layers = n_layers
54
+ self.kernel_size = kernel_size
55
+ self.p_dropout = p_dropout
56
+ self.proximal_bias = proximal_bias
57
+ self.proximal_init = proximal_init
58
+
59
+ self.drop = nn.Dropout(p_dropout)
60
+ self.self_attn_layers = nn.ModuleList()
61
+ self.norm_layers_0 = nn.ModuleList()
62
+ self.encdec_attn_layers = nn.ModuleList()
63
+ self.norm_layers_1 = nn.ModuleList()
64
+ self.ffn_layers = nn.ModuleList()
65
+ self.norm_layers_2 = nn.ModuleList()
66
+ for i in range(self.n_layers):
67
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
68
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
69
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
70
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
71
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
72
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
73
+
74
+ def forward(self, x, x_mask, h, h_mask):
75
+ """
76
+ x: decoder input
77
+ h: encoder output
78
+ """
79
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
80
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
81
+ x = x * x_mask
82
+ for i in range(self.n_layers):
83
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
84
+ y = self.drop(y)
85
+ x = self.norm_layers_0[i](x + y)
86
+
87
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
88
+ y = self.drop(y)
89
+ x = self.norm_layers_1[i](x + y)
90
+
91
+ y = self.ffn_layers[i](x, x_mask)
92
+ y = self.drop(y)
93
+ x = self.norm_layers_2[i](x + y)
94
+ x = x * x_mask
95
+ return x
96
+
97
+
98
+ class MultiHeadAttention(nn.Module):
99
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
100
+ super().__init__()
101
+ assert channels % n_heads == 0
102
+
103
+ self.channels = channels
104
+ self.out_channels = out_channels
105
+ self.n_heads = n_heads
106
+ self.p_dropout = p_dropout
107
+ self.window_size = window_size
108
+ self.heads_share = heads_share
109
+ self.block_length = block_length
110
+ self.proximal_bias = proximal_bias
111
+ self.proximal_init = proximal_init
112
+ self.attn = None
113
+
114
+ self.k_channels = channels // n_heads
115
+ self.conv_q = nn.Conv1d(channels, channels, 1)
116
+ self.conv_k = nn.Conv1d(channels, channels, 1)
117
+ self.conv_v = nn.Conv1d(channels, channels, 1)
118
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
119
+ self.drop = nn.Dropout(p_dropout)
120
+
121
+ if window_size is not None:
122
+ n_heads_rel = 1 if heads_share else n_heads
123
+ rel_stddev = self.k_channels**-0.5
124
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
125
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
126
+
127
+ nn.init.xavier_uniform_(self.conv_q.weight)
128
+ nn.init.xavier_uniform_(self.conv_k.weight)
129
+ nn.init.xavier_uniform_(self.conv_v.weight)
130
+ if proximal_init:
131
+ with torch.no_grad():
132
+ self.conv_k.weight.copy_(self.conv_q.weight)
133
+ self.conv_k.bias.copy_(self.conv_q.bias)
134
+
135
+ def forward(self, x, c, attn_mask=None):
136
+ q = self.conv_q(x)
137
+ k = self.conv_k(c)
138
+ v = self.conv_v(c)
139
+
140
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
141
+
142
+ x = self.conv_o(x)
143
+ return x
144
+
145
+ def attention(self, query, key, value, mask=None):
146
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
147
+ b, d, t_s, t_t = (*key.size(), query.size(2))
148
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
149
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
150
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
151
+
152
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
153
+ if self.window_size is not None:
154
+ assert t_s == t_t, "Relative attention is only available for self-attention."
155
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
156
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
157
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
158
+ scores = scores + scores_local
159
+ if self.proximal_bias:
160
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
161
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
162
+ if mask is not None:
163
+ scores = scores.masked_fill(mask == 0, -1e4)
164
+ if self.block_length is not None:
165
+ assert t_s == t_t, "Local attention is only available for self-attention."
166
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
167
+ scores = scores.masked_fill(block_mask == 0, -1e4)
168
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
169
+ p_attn = self.drop(p_attn)
170
+ output = torch.matmul(p_attn, value)
171
+ if self.window_size is not None:
172
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
173
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
174
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
175
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
176
+ return output, p_attn
177
+
178
+ def _matmul_with_relative_values(self, x, y):
179
+ """
180
+ x: [b, h, l, m]
181
+ y: [h or 1, m, d]
182
+ ret: [b, h, l, d]
183
+ """
184
+ ret = torch.matmul(x, y.unsqueeze(0))
185
+ return ret
186
+
187
+ def _matmul_with_relative_keys(self, x, y):
188
+ """
189
+ x: [b, h, l, d]
190
+ y: [h or 1, m, d]
191
+ ret: [b, h, l, m]
192
+ """
193
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
194
+ return ret
195
+
196
+ def _get_relative_embeddings(self, relative_embeddings, length):
197
+ max_relative_position = 2 * self.window_size + 1
198
+ # Pad first before slice to avoid using cond ops.
199
+ pad_length = max(length - (self.window_size + 1), 0)
200
+ slice_start_position = max((self.window_size + 1) - length, 0)
201
+ slice_end_position = slice_start_position + 2 * length - 1
202
+ if pad_length > 0:
203
+ padded_relative_embeddings = F.pad(
204
+ relative_embeddings,
205
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
206
+ else:
207
+ padded_relative_embeddings = relative_embeddings
208
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
209
+ return used_relative_embeddings
210
+
211
+ def _relative_position_to_absolute_position(self, x):
212
+ """
213
+ x: [b, h, l, 2*l-1]
214
+ ret: [b, h, l, l]
215
+ """
216
+ batch, heads, length, _ = x.size()
217
+ # Concat columns of pad to shift from relative to absolute indexing.
218
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
219
+
220
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
221
+ x_flat = x.view([batch, heads, length * 2 * length])
222
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
223
+
224
+ # Reshape and slice out the padded elements.
225
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
226
+ return x_final
227
+
228
+ def _absolute_position_to_relative_position(self, x):
229
+ """
230
+ x: [b, h, l, l]
231
+ ret: [b, h, l, 2*l-1]
232
+ """
233
+ batch, heads, length, _ = x.size()
234
+ # padd along column
235
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
236
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
237
+ # add 0's in the beginning that will skew the elements after reshape
238
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
239
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
240
+ return x_final
241
+
242
+ def _attention_bias_proximal(self, length):
243
+ """Bias for self-attention to encourage attention to close positions.
244
+ Args:
245
+ length: an integer scalar.
246
+ Returns:
247
+ a Tensor with shape [1, 1, length, length]
248
+ """
249
+ r = torch.arange(length, dtype=torch.float32)
250
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
251
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
252
+
253
+
254
+ class FFN(nn.Module):
255
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
256
+ super().__init__()
257
+ self.in_channels = in_channels
258
+ self.out_channels = out_channels
259
+ self.filter_channels = filter_channels
260
+ self.kernel_size = kernel_size
261
+ self.p_dropout = p_dropout
262
+ self.activation = activation
263
+ self.causal = causal
264
+
265
+ if causal:
266
+ self.padding = self._causal_padding
267
+ else:
268
+ self.padding = self._same_padding
269
+
270
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
271
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
272
+ self.drop = nn.Dropout(p_dropout)
273
+
274
+ def forward(self, x, x_mask):
275
+ x = self.conv_1(self.padding(x * x_mask))
276
+ if self.activation == "gelu":
277
+ x = x * torch.sigmoid(1.702 * x)
278
+ else:
279
+ x = torch.relu(x)
280
+ x = self.drop(x)
281
+ x = self.conv_2(self.padding(x * x_mask))
282
+ return x * x_mask
283
+
284
+ def _causal_padding(self, x):
285
+ if self.kernel_size == 1:
286
+ return x
287
+ pad_l = self.kernel_size - 1
288
+ pad_r = 0
289
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
290
+ x = F.pad(x, commons.convert_pad_shape(padding))
291
+ return x
292
+
293
+ def _same_padding(self, x):
294
+ if self.kernel_size == 1:
295
+ return x
296
+ pad_l = (self.kernel_size - 1) // 2
297
+ pad_r = self.kernel_size // 2
298
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
299
+ x = F.pad(x, commons.convert_pad_shape(padding))
300
+ return x
commons.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch.nn import functional as F
4
+ import torch.jit
5
+
6
+
7
+ def script_method(fn, _rcb=None):
8
+ return fn
9
+
10
+
11
+ def script(obj, optimize=True, _frames_up=0, _rcb=None):
12
+ return obj
13
+
14
+
15
+ torch.jit.script_method = script_method
16
+ torch.jit.script = script
17
+
18
+
19
+ def init_weights(m, mean=0.0, std=0.01):
20
+ classname = m.__class__.__name__
21
+ if classname.find("Conv") != -1:
22
+ m.weight.data.normal_(mean, std)
23
+
24
+
25
+ def get_padding(kernel_size, dilation=1):
26
+ return int((kernel_size*dilation - dilation)/2)
27
+
28
+
29
+ def intersperse(lst, item):
30
+ result = [item] * (len(lst) * 2 + 1)
31
+ result[1::2] = lst
32
+ return result
33
+
34
+
35
+ def slice_segments(x, ids_str, segment_size=4):
36
+ ret = torch.zeros_like(x[:, :, :segment_size])
37
+ for i in range(x.size(0)):
38
+ idx_str = ids_str[i]
39
+ idx_end = idx_str + segment_size
40
+ ret[i] = x[i, :, idx_str:idx_end]
41
+ return ret
42
+
43
+
44
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
45
+ b, d, t = x.size()
46
+ if x_lengths is None:
47
+ x_lengths = t
48
+ ids_str_max = x_lengths - segment_size + 1
49
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
50
+ ret = slice_segments(x, ids_str, segment_size)
51
+ return ret, ids_str
52
+
53
+
54
+ def subsequent_mask(length):
55
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
56
+ return mask
57
+
58
+
59
+ @torch.jit.script
60
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
61
+ n_channels_int = n_channels[0]
62
+ in_act = input_a + input_b
63
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
64
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
65
+ acts = t_act * s_act
66
+ return acts
67
+
68
+
69
+ def convert_pad_shape(pad_shape):
70
+ l = pad_shape[::-1]
71
+ pad_shape = [item for sublist in l for item in sublist]
72
+ return pad_shape
73
+
74
+
75
+ def sequence_mask(length, max_length=None):
76
+ if max_length is None:
77
+ max_length = length.max()
78
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
79
+ return x.unsqueeze(0) < length.unsqueeze(1)
80
+
81
+
82
+ def generate_path(duration, mask):
83
+ """
84
+ duration: [b, 1, t_x]
85
+ mask: [b, 1, t_y, t_x]
86
+ """
87
+ device = duration.device
88
+
89
+ b, _, t_y, t_x = mask.shape
90
+ cum_duration = torch.cumsum(duration, -1)
91
+
92
+ cum_duration_flat = cum_duration.view(b * t_x)
93
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
94
+ path = path.view(b, t_x, t_y)
95
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
96
+ path = path.unsqueeze(1).transpose(2,3) * mask
97
+ return path
config.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+
4
+ def get_pth_file(dir_path):
5
+ file_list = []
6
+ for root, dirs, files in os.walk(dir_path):
7
+ for file in files:
8
+ if file.endswith("pth"):
9
+ file_list.append(os.path.join(root, file))
10
+
11
+ return file_list
12
+
13
+
14
+ file_list = get_pth_file("./")
15
+ epoch = max([epochs.split("/")[-1].split("_")[0] for epochs in file_list])
16
+ pth_path = f"{epoch}_epochs.pth"
17
+ config_json = "config.json"
infer.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding:utf-8
2
+ import re
3
+
4
+ import torch
5
+ import unicodedata
6
+ from pydub import AudioSegment
7
+ from scipy.io.wavfile import write
8
+
9
+ import commons
10
+ import config
11
+ import utils
12
+ from models import SynthesizerTrn
13
+ from text import text_to_sequence
14
+
15
+ pth_path = config.pth_path
16
+ config_json = config.config_json
17
+
18
+
19
+ def wav2mp3(file_name):
20
+ sourcefile = AudioSegment.from_wav(f"{file_name}.wav")
21
+ sourcefile.export(f"{file_name}.mp3", format="mp3")
22
+
23
+
24
+ def get_text(text, hps, cleaned=False):
25
+ if cleaned:
26
+ text_norm = text_to_sequence(text, hps.symbols, [])
27
+ else:
28
+ text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
29
+ if hps.data.add_blank:
30
+ text_norm = commons.intersperse(text_norm, 0)
31
+ text_norm = torch.LongTensor(text_norm)
32
+ return text_norm
33
+
34
+
35
+ def get_label(text, label):
36
+ if f'[{label}]' in text:
37
+ return True, text.replace(f'[{label}]', '')
38
+ else:
39
+ return False, text
40
+
41
+
42
+ def clean_text(text):
43
+ jap = re.compile(r'[\u3040-\u309F\u30A0-\u30FF\uAC00-\uD7A3]') # \uAC00-\uD7A3为匹配韩文的,其余为日文
44
+ text = f"[JA]{text}[JA]" if jap.search(text) else f"[ZH]{text}[ZH]"
45
+ text = unicodedata.normalize('NFKC', text)
46
+ return text
47
+
48
+
49
+ def load_model(config_json, pth_path):
50
+ dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
51
+ hps_ms = utils.get_hparams_from_file(f"./configs/{config_json}")
52
+ n_speakers = hps_ms.data.n_speakers if 'n_speakers' in hps_ms.data.keys() else 0
53
+ n_symbols = len(hps_ms.symbols) if 'symbols' in hps_ms.keys() else 0
54
+ net_g_ms = SynthesizerTrn(
55
+ n_symbols,
56
+ hps_ms.data.filter_length // 2 + 1,
57
+ hps_ms.train.segment_size // hps_ms.data.hop_length,
58
+ n_speakers=n_speakers,
59
+ **hps_ms.model).to(dev)
60
+ _ = net_g_ms.eval()
61
+ _ = utils.load_checkpoint(pth_path, net_g_ms)
62
+ return net_g_ms, hps_ms
63
+
64
+
65
+ def infer(text, net_g_ms, speaker_id, out_name):
66
+ dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
67
+ hps_ms = utils.get_hparams_from_file(f"./configs/{config_json}")
68
+ with torch.no_grad():
69
+ stn_tst = get_text(text, hps_ms, cleaned=False)
70
+ x_tst = stn_tst.unsqueeze(0).to(dev)
71
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
72
+ sid = torch.LongTensor([speaker_id]).to(dev)
73
+ audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1)[0][
74
+ 0, 0].data.cpu().float().numpy()
75
+ write(f"{out_name}.wav", hps_ms.data.sampling_rate, audio)
76
+ wav2mp3(out_name)
77
+ return audio
78
+
79
+
80
+ if __name__ == "__main__":
81
+ out_name = "水调歌头"
82
+ speaker_id = 0
83
+ text = "明月几时有,把酒问青天。不知天上宫阙,今夕是何年。我欲乘风归去,又恐琼楼玉宇,高处不胜寒。"
84
+ text = clean_text(text)
85
+ net_g_ms = load_model(config_json, pth_path)
86
+ infer(text, net_g_ms, speaker_id, out_name)
models.py ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import Conv1d, ConvTranspose1d, Conv2d
6
+ from torch.nn import functional as F
7
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
8
+
9
+ import attentions
10
+ import commons
11
+ import modules
12
+ from commons import init_weights, get_padding
13
+
14
+
15
+ class StochasticDurationPredictor(nn.Module):
16
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
17
+ super().__init__()
18
+ filter_channels = in_channels # it needs to be removed from future version.
19
+ self.in_channels = in_channels
20
+ self.filter_channels = filter_channels
21
+ self.kernel_size = kernel_size
22
+ self.p_dropout = p_dropout
23
+ self.n_flows = n_flows
24
+ self.gin_channels = gin_channels
25
+
26
+ self.log_flow = modules.Log()
27
+ self.flows = nn.ModuleList()
28
+ self.flows.append(modules.ElementwiseAffine(2))
29
+ for i in range(n_flows):
30
+ self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
31
+ self.flows.append(modules.Flip())
32
+
33
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
34
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
35
+ self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
36
+ self.post_flows = nn.ModuleList()
37
+ self.post_flows.append(modules.ElementwiseAffine(2))
38
+ for i in range(4):
39
+ self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
40
+ self.post_flows.append(modules.Flip())
41
+
42
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
43
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
44
+ self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
45
+ if gin_channels != 0:
46
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
47
+
48
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
49
+ x = torch.detach(x)
50
+ x = self.pre(x)
51
+ if g is not None:
52
+ g = torch.detach(g)
53
+ x = x + self.cond(g)
54
+ x = self.convs(x, x_mask)
55
+ x = self.proj(x) * x_mask
56
+
57
+ if not reverse:
58
+ flows = self.flows
59
+ assert w is not None
60
+
61
+ logdet_tot_q = 0
62
+ h_w = self.post_pre(w)
63
+ h_w = self.post_convs(h_w, x_mask)
64
+ h_w = self.post_proj(h_w) * x_mask
65
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
66
+ z_q = e_q
67
+ for flow in self.post_flows:
68
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
69
+ logdet_tot_q += logdet_q
70
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
71
+ u = torch.sigmoid(z_u) * x_mask
72
+ z0 = (w - u) * x_mask
73
+ logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
74
+ logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
75
+
76
+ logdet_tot = 0
77
+ z0, logdet = self.log_flow(z0, x_mask)
78
+ logdet_tot += logdet
79
+ z = torch.cat([z0, z1], 1)
80
+ for flow in flows:
81
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
82
+ logdet_tot = logdet_tot + logdet
83
+ nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
84
+ return nll + logq # [b]
85
+ else:
86
+ flows = list(reversed(self.flows))
87
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
88
+ z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
89
+ for flow in flows:
90
+ z = flow(z, x_mask, g=x, reverse=reverse)
91
+ z0, z1 = torch.split(z, [1, 1], 1)
92
+ logw = z0
93
+ return logw
94
+
95
+
96
+ class DurationPredictor(nn.Module):
97
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
98
+ super().__init__()
99
+
100
+ self.in_channels = in_channels
101
+ self.filter_channels = filter_channels
102
+ self.kernel_size = kernel_size
103
+ self.p_dropout = p_dropout
104
+ self.gin_channels = gin_channels
105
+
106
+ self.drop = nn.Dropout(p_dropout)
107
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
108
+ self.norm_1 = modules.LayerNorm(filter_channels)
109
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
110
+ self.norm_2 = modules.LayerNorm(filter_channels)
111
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
112
+
113
+ if gin_channels != 0:
114
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
115
+
116
+ def forward(self, x, x_mask, g=None):
117
+ x = torch.detach(x)
118
+ if g is not None:
119
+ g = torch.detach(g)
120
+ x = x + self.cond(g)
121
+ x = self.conv_1(x * x_mask)
122
+ x = torch.relu(x)
123
+ x = self.norm_1(x)
124
+ x = self.drop(x)
125
+ x = self.conv_2(x * x_mask)
126
+ x = torch.relu(x)
127
+ x = self.norm_2(x)
128
+ x = self.drop(x)
129
+ x = self.proj(x * x_mask)
130
+ return x * x_mask
131
+
132
+
133
+ class TextEncoder(nn.Module):
134
+ def __init__(self,
135
+ n_vocab,
136
+ out_channels,
137
+ hidden_channels,
138
+ filter_channels,
139
+ n_heads,
140
+ n_layers,
141
+ kernel_size,
142
+ p_dropout):
143
+ super().__init__()
144
+ self.n_vocab = n_vocab
145
+ self.out_channels = out_channels
146
+ self.hidden_channels = hidden_channels
147
+ self.filter_channels = filter_channels
148
+ self.n_heads = n_heads
149
+ self.n_layers = n_layers
150
+ self.kernel_size = kernel_size
151
+ self.p_dropout = p_dropout
152
+
153
+ if self.n_vocab != 0:
154
+ self.emb = nn.Embedding(n_vocab, hidden_channels)
155
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
156
+
157
+ self.encoder = attentions.Encoder(
158
+ hidden_channels,
159
+ filter_channels,
160
+ n_heads,
161
+ n_layers,
162
+ kernel_size,
163
+ p_dropout)
164
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
165
+
166
+ def forward(self, x, x_lengths):
167
+ if self.n_vocab != 0:
168
+ x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
169
+ x = torch.transpose(x, 1, -1) # [b, h, t]
170
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
171
+
172
+ x = self.encoder(x * x_mask, x_mask)
173
+ stats = self.proj(x) * x_mask
174
+
175
+ m, logs = torch.split(stats, self.out_channels, dim=1)
176
+ return x, m, logs, x_mask
177
+
178
+
179
+ class ResidualCouplingBlock(nn.Module):
180
+ def __init__(self,
181
+ channels,
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ n_flows=4,
187
+ gin_channels=0):
188
+ super().__init__()
189
+ self.channels = channels
190
+ self.hidden_channels = hidden_channels
191
+ self.kernel_size = kernel_size
192
+ self.dilation_rate = dilation_rate
193
+ self.n_layers = n_layers
194
+ self.n_flows = n_flows
195
+ self.gin_channels = gin_channels
196
+
197
+ self.flows = nn.ModuleList()
198
+ for i in range(n_flows):
199
+ self.flows.append(
200
+ modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
201
+ gin_channels=gin_channels, mean_only=True))
202
+ self.flows.append(modules.Flip())
203
+
204
+ def forward(self, x, x_mask, g=None, reverse=False):
205
+ if not reverse:
206
+ for flow in self.flows:
207
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
208
+ else:
209
+ for flow in reversed(self.flows):
210
+ x = flow(x, x_mask, g=g, reverse=reverse)
211
+ return x
212
+
213
+
214
+ class PosteriorEncoder(nn.Module):
215
+ def __init__(self,
216
+ in_channels,
217
+ out_channels,
218
+ hidden_channels,
219
+ kernel_size,
220
+ dilation_rate,
221
+ n_layers,
222
+ gin_channels=0):
223
+ super().__init__()
224
+ self.in_channels = in_channels
225
+ self.out_channels = out_channels
226
+ self.hidden_channels = hidden_channels
227
+ self.kernel_size = kernel_size
228
+ self.dilation_rate = dilation_rate
229
+ self.n_layers = n_layers
230
+ self.gin_channels = gin_channels
231
+
232
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
233
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
234
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
235
+
236
+ def forward(self, x, x_lengths, g=None):
237
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
238
+ x = self.pre(x) * x_mask
239
+ x = self.enc(x, x_mask, g=g)
240
+ stats = self.proj(x) * x_mask
241
+ m, logs = torch.split(stats, self.out_channels, dim=1)
242
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
243
+ return z, m, logs, x_mask
244
+
245
+
246
+ class Generator(torch.nn.Module):
247
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
248
+ upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
249
+ super(Generator, self).__init__()
250
+ self.num_kernels = len(resblock_kernel_sizes)
251
+ self.num_upsamples = len(upsample_rates)
252
+ self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
253
+ resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
254
+
255
+ self.ups = nn.ModuleList()
256
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
257
+ self.ups.append(weight_norm(
258
+ ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
259
+ k, u, padding=(k - u) // 2)))
260
+
261
+ self.resblocks = nn.ModuleList()
262
+ for i in range(len(self.ups)):
263
+ ch = upsample_initial_channel // (2 ** (i + 1))
264
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
265
+ self.resblocks.append(resblock(ch, k, d))
266
+
267
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
268
+ self.ups.apply(init_weights)
269
+
270
+ if gin_channels != 0:
271
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
272
+
273
+ def forward(self, x, g=None):
274
+ x = self.conv_pre(x)
275
+ if g is not None:
276
+ x = x + self.cond(g)
277
+
278
+ for i in range(self.num_upsamples):
279
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
280
+ x = self.ups[i](x)
281
+ xs = None
282
+ for j in range(self.num_kernels):
283
+ if xs is None:
284
+ xs = self.resblocks[i * self.num_kernels + j](x)
285
+ else:
286
+ xs += self.resblocks[i * self.num_kernels + j](x)
287
+ x = xs / self.num_kernels
288
+ x = F.leaky_relu(x)
289
+ x = self.conv_post(x)
290
+ x = torch.tanh(x)
291
+
292
+ return x
293
+
294
+ def remove_weight_norm(self):
295
+ print('Removing weight norm...')
296
+ for l in self.ups:
297
+ remove_weight_norm(l)
298
+ for l in self.resblocks:
299
+ l.remove_weight_norm()
300
+
301
+
302
+ class DiscriminatorP(torch.nn.Module):
303
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
304
+ super(DiscriminatorP, self).__init__()
305
+ self.period = period
306
+ self.use_spectral_norm = use_spectral_norm
307
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
308
+ self.convs = nn.ModuleList([
309
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
310
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
311
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
312
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
313
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
314
+ ])
315
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
316
+
317
+ def forward(self, x):
318
+ fmap = []
319
+
320
+ # 1d to 2d
321
+ b, c, t = x.shape
322
+ if t % self.period != 0: # pad first
323
+ n_pad = self.period - (t % self.period)
324
+ x = F.pad(x, (0, n_pad), "reflect")
325
+ t = t + n_pad
326
+ x = x.view(b, c, t // self.period, self.period)
327
+
328
+ for l in self.convs:
329
+ x = l(x)
330
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
331
+ fmap.append(x)
332
+ x = self.conv_post(x)
333
+ fmap.append(x)
334
+ x = torch.flatten(x, 1, -1)
335
+
336
+ return x, fmap
337
+
338
+
339
+ class DiscriminatorS(torch.nn.Module):
340
+ def __init__(self, use_spectral_norm=False):
341
+ super(DiscriminatorS, self).__init__()
342
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
343
+ self.convs = nn.ModuleList([
344
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
345
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
346
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
347
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
348
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
349
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
350
+ ])
351
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
352
+
353
+ def forward(self, x):
354
+ fmap = []
355
+
356
+ for l in self.convs:
357
+ x = l(x)
358
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
359
+ fmap.append(x)
360
+ x = self.conv_post(x)
361
+ fmap.append(x)
362
+ x = torch.flatten(x, 1, -1)
363
+
364
+ return x, fmap
365
+
366
+
367
+ class MultiPeriodDiscriminator(torch.nn.Module):
368
+ def __init__(self, use_spectral_norm=False):
369
+ super(MultiPeriodDiscriminator, self).__init__()
370
+ periods = [2, 3, 5, 7, 11]
371
+
372
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
373
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
374
+ self.discriminators = nn.ModuleList(discs)
375
+
376
+ def forward(self, y, y_hat):
377
+ y_d_rs = []
378
+ y_d_gs = []
379
+ fmap_rs = []
380
+ fmap_gs = []
381
+ for i, d in enumerate(self.discriminators):
382
+ y_d_r, fmap_r = d(y)
383
+ y_d_g, fmap_g = d(y_hat)
384
+ y_d_rs.append(y_d_r)
385
+ y_d_gs.append(y_d_g)
386
+ fmap_rs.append(fmap_r)
387
+ fmap_gs.append(fmap_g)
388
+
389
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
390
+
391
+
392
+ class SynthesizerTrn(nn.Module):
393
+ """
394
+ Synthesizer for Training
395
+ """
396
+
397
+ def __init__(self,
398
+ n_vocab,
399
+ spec_channels,
400
+ segment_size,
401
+ inter_channels,
402
+ hidden_channels,
403
+ filter_channels,
404
+ n_heads,
405
+ n_layers,
406
+ kernel_size,
407
+ p_dropout,
408
+ resblock,
409
+ resblock_kernel_sizes,
410
+ resblock_dilation_sizes,
411
+ upsample_rates,
412
+ upsample_initial_channel,
413
+ upsample_kernel_sizes,
414
+ n_speakers=0,
415
+ gin_channels=0,
416
+ use_sdp=True,
417
+ **kwargs):
418
+
419
+ super().__init__()
420
+ self.n_vocab = n_vocab
421
+ self.spec_channels = spec_channels
422
+ self.inter_channels = inter_channels
423
+ self.hidden_channels = hidden_channels
424
+ self.filter_channels = filter_channels
425
+ self.n_heads = n_heads
426
+ self.n_layers = n_layers
427
+ self.kernel_size = kernel_size
428
+ self.p_dropout = p_dropout
429
+ self.resblock = resblock
430
+ self.resblock_kernel_sizes = resblock_kernel_sizes
431
+ self.resblock_dilation_sizes = resblock_dilation_sizes
432
+ self.upsample_rates = upsample_rates
433
+ self.upsample_initial_channel = upsample_initial_channel
434
+ self.upsample_kernel_sizes = upsample_kernel_sizes
435
+ self.segment_size = segment_size
436
+ self.n_speakers = n_speakers
437
+ self.gin_channels = gin_channels
438
+
439
+ self.use_sdp = use_sdp
440
+
441
+ self.enc_p = TextEncoder(n_vocab,
442
+ inter_channels,
443
+ hidden_channels,
444
+ filter_channels,
445
+ n_heads,
446
+ n_layers,
447
+ kernel_size,
448
+ p_dropout)
449
+ self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
450
+ upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
451
+ self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
452
+ gin_channels=gin_channels)
453
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
454
+
455
+ if use_sdp:
456
+ self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
457
+ else:
458
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
459
+
460
+ if n_speakers > 1:
461
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
462
+
463
+ def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
464
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
465
+ if self.n_speakers > 0:
466
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
467
+ else:
468
+ g = None
469
+
470
+ if self.use_sdp:
471
+ logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
472
+ else:
473
+ logw = self.dp(x, x_mask, g=g)
474
+ w = torch.exp(logw) * x_mask * length_scale
475
+ w_ceil = torch.ceil(w)
476
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
477
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
478
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
479
+ attn = commons.generate_path(w_ceil, attn_mask)
480
+
481
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
482
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
483
+ 2) # [b, t', t], [b, t, d] -> [b, d, t']
484
+
485
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
486
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
487
+ o = self.dec((z * y_mask)[:, :, :max_len], g=g)
488
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
489
+
490
+ def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
491
+ assert self.n_speakers > 0, "n_speakers have to be larger than 0."
492
+ g_src = self.emb_g(sid_src).unsqueeze(-1)
493
+ g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
494
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
495
+ z_p = self.flow(z, y_mask, g=g_src)
496
+ z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
497
+ o_hat = self.dec(z_hat * y_mask, g=g_tgt)
498
+ return o_hat, y_mask, (z, z_p, z_hat)
modules.py ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ from torch.nn import Conv1d
7
+ from torch.nn.utils import weight_norm, remove_weight_norm
8
+
9
+ import commons
10
+ from commons import init_weights, get_padding
11
+ from transforms import piecewise_rational_quadratic_transform
12
+
13
+
14
+ LRELU_SLOPE = 0.1
15
+
16
+
17
+ class LayerNorm(nn.Module):
18
+ def __init__(self, channels, eps=1e-5):
19
+ super().__init__()
20
+ self.channels = channels
21
+ self.eps = eps
22
+
23
+ self.gamma = nn.Parameter(torch.ones(channels))
24
+ self.beta = nn.Parameter(torch.zeros(channels))
25
+
26
+ def forward(self, x):
27
+ x = x.transpose(1, -1)
28
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
29
+ return x.transpose(1, -1)
30
+
31
+
32
+ class ConvReluNorm(nn.Module):
33
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
34
+ super().__init__()
35
+ self.in_channels = in_channels
36
+ self.hidden_channels = hidden_channels
37
+ self.out_channels = out_channels
38
+ self.kernel_size = kernel_size
39
+ self.n_layers = n_layers
40
+ self.p_dropout = p_dropout
41
+ assert n_layers > 1, "Number of layers should be larger than 0."
42
+
43
+ self.conv_layers = nn.ModuleList()
44
+ self.norm_layers = nn.ModuleList()
45
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
46
+ self.norm_layers.append(LayerNorm(hidden_channels))
47
+ self.relu_drop = nn.Sequential(
48
+ nn.ReLU(),
49
+ nn.Dropout(p_dropout))
50
+ for _ in range(n_layers-1):
51
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
52
+ self.norm_layers.append(LayerNorm(hidden_channels))
53
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
54
+ self.proj.weight.data.zero_()
55
+ self.proj.bias.data.zero_()
56
+
57
+ def forward(self, x, x_mask):
58
+ x_org = x
59
+ for i in range(self.n_layers):
60
+ x = self.conv_layers[i](x * x_mask)
61
+ x = self.norm_layers[i](x)
62
+ x = self.relu_drop(x)
63
+ x = x_org + self.proj(x)
64
+ return x * x_mask
65
+
66
+
67
+ class DDSConv(nn.Module):
68
+ """
69
+ Dialted and Depth-Separable Convolution
70
+ """
71
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
72
+ super().__init__()
73
+ self.channels = channels
74
+ self.kernel_size = kernel_size
75
+ self.n_layers = n_layers
76
+ self.p_dropout = p_dropout
77
+
78
+ self.drop = nn.Dropout(p_dropout)
79
+ self.convs_sep = nn.ModuleList()
80
+ self.convs_1x1 = nn.ModuleList()
81
+ self.norms_1 = nn.ModuleList()
82
+ self.norms_2 = nn.ModuleList()
83
+ for i in range(n_layers):
84
+ dilation = kernel_size ** i
85
+ padding = (kernel_size * dilation - dilation) // 2
86
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
87
+ groups=channels, dilation=dilation, padding=padding
88
+ ))
89
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
90
+ self.norms_1.append(LayerNorm(channels))
91
+ self.norms_2.append(LayerNorm(channels))
92
+
93
+ def forward(self, x, x_mask, g=None):
94
+ if g is not None:
95
+ x = x + g
96
+ for i in range(self.n_layers):
97
+ y = self.convs_sep[i](x * x_mask)
98
+ y = self.norms_1[i](y)
99
+ y = F.gelu(y)
100
+ y = self.convs_1x1[i](y)
101
+ y = self.norms_2[i](y)
102
+ y = F.gelu(y)
103
+ y = self.drop(y)
104
+ x = x + y
105
+ return x * x_mask
106
+
107
+
108
+ class WN(torch.nn.Module):
109
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
110
+ super(WN, self).__init__()
111
+ assert(kernel_size % 2 == 1)
112
+ self.hidden_channels =hidden_channels
113
+ self.kernel_size = kernel_size,
114
+ self.dilation_rate = dilation_rate
115
+ self.n_layers = n_layers
116
+ self.gin_channels = gin_channels
117
+ self.p_dropout = p_dropout
118
+
119
+ self.in_layers = torch.nn.ModuleList()
120
+ self.res_skip_layers = torch.nn.ModuleList()
121
+ self.drop = nn.Dropout(p_dropout)
122
+
123
+ if gin_channels != 0:
124
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
125
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
126
+
127
+ for i in range(n_layers):
128
+ dilation = dilation_rate ** i
129
+ padding = int((kernel_size * dilation - dilation) / 2)
130
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
131
+ dilation=dilation, padding=padding)
132
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
133
+ self.in_layers.append(in_layer)
134
+
135
+ # last one is not necessary
136
+ if i < n_layers - 1:
137
+ res_skip_channels = 2 * hidden_channels
138
+ else:
139
+ res_skip_channels = hidden_channels
140
+
141
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
142
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
143
+ self.res_skip_layers.append(res_skip_layer)
144
+
145
+ def forward(self, x, x_mask, g=None, **kwargs):
146
+ output = torch.zeros_like(x)
147
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
148
+
149
+ if g is not None:
150
+ g = self.cond_layer(g)
151
+
152
+ for i in range(self.n_layers):
153
+ x_in = self.in_layers[i](x)
154
+ if g is not None:
155
+ cond_offset = i * 2 * self.hidden_channels
156
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
157
+ else:
158
+ g_l = torch.zeros_like(x_in)
159
+
160
+ acts = commons.fused_add_tanh_sigmoid_multiply(
161
+ x_in,
162
+ g_l,
163
+ n_channels_tensor)
164
+ acts = self.drop(acts)
165
+
166
+ res_skip_acts = self.res_skip_layers[i](acts)
167
+ if i < self.n_layers - 1:
168
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
169
+ x = (x + res_acts) * x_mask
170
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
171
+ else:
172
+ output = output + res_skip_acts
173
+ return output * x_mask
174
+
175
+ def remove_weight_norm(self):
176
+ if self.gin_channels != 0:
177
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
178
+ for l in self.in_layers:
179
+ torch.nn.utils.remove_weight_norm(l)
180
+ for l in self.res_skip_layers:
181
+ torch.nn.utils.remove_weight_norm(l)
182
+
183
+
184
+ class ResBlock1(torch.nn.Module):
185
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
186
+ super(ResBlock1, self).__init__()
187
+ self.convs1 = nn.ModuleList([
188
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
189
+ padding=get_padding(kernel_size, dilation[0]))),
190
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
191
+ padding=get_padding(kernel_size, dilation[1]))),
192
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
193
+ padding=get_padding(kernel_size, dilation[2])))
194
+ ])
195
+ self.convs1.apply(init_weights)
196
+
197
+ self.convs2 = nn.ModuleList([
198
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
199
+ padding=get_padding(kernel_size, 1))),
200
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
201
+ padding=get_padding(kernel_size, 1))),
202
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
203
+ padding=get_padding(kernel_size, 1)))
204
+ ])
205
+ self.convs2.apply(init_weights)
206
+
207
+ def forward(self, x, x_mask=None):
208
+ for c1, c2 in zip(self.convs1, self.convs2):
209
+ xt = F.leaky_relu(x, LRELU_SLOPE)
210
+ if x_mask is not None:
211
+ xt = xt * x_mask
212
+ xt = c1(xt)
213
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
214
+ if x_mask is not None:
215
+ xt = xt * x_mask
216
+ xt = c2(xt)
217
+ x = xt + x
218
+ if x_mask is not None:
219
+ x = x * x_mask
220
+ return x
221
+
222
+ def remove_weight_norm(self):
223
+ for l in self.convs1:
224
+ remove_weight_norm(l)
225
+ for l in self.convs2:
226
+ remove_weight_norm(l)
227
+
228
+
229
+ class ResBlock2(torch.nn.Module):
230
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
231
+ super(ResBlock2, self).__init__()
232
+ self.convs = nn.ModuleList([
233
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
234
+ padding=get_padding(kernel_size, dilation[0]))),
235
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
236
+ padding=get_padding(kernel_size, dilation[1])))
237
+ ])
238
+ self.convs.apply(init_weights)
239
+
240
+ def forward(self, x, x_mask=None):
241
+ for c in self.convs:
242
+ xt = F.leaky_relu(x, LRELU_SLOPE)
243
+ if x_mask is not None:
244
+ xt = xt * x_mask
245
+ xt = c(xt)
246
+ x = xt + x
247
+ if x_mask is not None:
248
+ x = x * x_mask
249
+ return x
250
+
251
+ def remove_weight_norm(self):
252
+ for l in self.convs:
253
+ remove_weight_norm(l)
254
+
255
+
256
+ class Log(nn.Module):
257
+ def forward(self, x, x_mask, reverse=False, **kwargs):
258
+ if not reverse:
259
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
260
+ logdet = torch.sum(-y, [1, 2])
261
+ return y, logdet
262
+ else:
263
+ x = torch.exp(x) * x_mask
264
+ return x
265
+
266
+
267
+ class Flip(nn.Module):
268
+ def forward(self, x, *args, reverse=False, **kwargs):
269
+ x = torch.flip(x, [1])
270
+ if not reverse:
271
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
272
+ return x, logdet
273
+ else:
274
+ return x
275
+
276
+
277
+ class ElementwiseAffine(nn.Module):
278
+ def __init__(self, channels):
279
+ super().__init__()
280
+ self.channels = channels
281
+ self.m = nn.Parameter(torch.zeros(channels,1))
282
+ self.logs = nn.Parameter(torch.zeros(channels,1))
283
+
284
+ def forward(self, x, x_mask, reverse=False, **kwargs):
285
+ if not reverse:
286
+ y = self.m + torch.exp(self.logs) * x
287
+ y = y * x_mask
288
+ logdet = torch.sum(self.logs * x_mask, [1,2])
289
+ return y, logdet
290
+ else:
291
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
292
+ return x
293
+
294
+
295
+ class ResidualCouplingLayer(nn.Module):
296
+ def __init__(self,
297
+ channels,
298
+ hidden_channels,
299
+ kernel_size,
300
+ dilation_rate,
301
+ n_layers,
302
+ p_dropout=0,
303
+ gin_channels=0,
304
+ mean_only=False):
305
+ assert channels % 2 == 0, "channels should be divisible by 2"
306
+ super().__init__()
307
+ self.channels = channels
308
+ self.hidden_channels = hidden_channels
309
+ self.kernel_size = kernel_size
310
+ self.dilation_rate = dilation_rate
311
+ self.n_layers = n_layers
312
+ self.half_channels = channels // 2
313
+ self.mean_only = mean_only
314
+
315
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
316
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
317
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
318
+ self.post.weight.data.zero_()
319
+ self.post.bias.data.zero_()
320
+
321
+ def forward(self, x, x_mask, g=None, reverse=False):
322
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
323
+ h = self.pre(x0) * x_mask
324
+ h = self.enc(h, x_mask, g=g)
325
+ stats = self.post(h) * x_mask
326
+ if not self.mean_only:
327
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
328
+ else:
329
+ m = stats
330
+ logs = torch.zeros_like(m)
331
+
332
+ if not reverse:
333
+ x1 = m + x1 * torch.exp(logs) * x_mask
334
+ x = torch.cat([x0, x1], 1)
335
+ logdet = torch.sum(logs, [1,2])
336
+ return x, logdet
337
+ else:
338
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
339
+ x = torch.cat([x0, x1], 1)
340
+ return x
341
+
342
+
343
+ class ConvFlow(nn.Module):
344
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
345
+ super().__init__()
346
+ self.in_channels = in_channels
347
+ self.filter_channels = filter_channels
348
+ self.kernel_size = kernel_size
349
+ self.n_layers = n_layers
350
+ self.num_bins = num_bins
351
+ self.tail_bound = tail_bound
352
+ self.half_channels = in_channels // 2
353
+
354
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
355
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
356
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
357
+ self.proj.weight.data.zero_()
358
+ self.proj.bias.data.zero_()
359
+
360
+ def forward(self, x, x_mask, g=None, reverse=False):
361
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
362
+ h = self.pre(x0)
363
+ h = self.convs(h, x_mask, g=g)
364
+ h = self.proj(h) * x_mask
365
+
366
+ b, c, t = x0.shape
367
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
368
+
369
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
370
+ unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
371
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
372
+
373
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
374
+ unnormalized_widths,
375
+ unnormalized_heights,
376
+ unnormalized_derivatives,
377
+ inverse=reverse,
378
+ tails='linear',
379
+ tail_bound=self.tail_bound
380
+ )
381
+
382
+ x = torch.cat([x0, x1], 1) * x_mask
383
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
384
+ if not reverse:
385
+ return x, logdet
386
+ else:
387
+ return x
transforms.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(inputs,
13
+ unnormalized_widths,
14
+ unnormalized_heights,
15
+ unnormalized_derivatives,
16
+ inverse=False,
17
+ tails=None,
18
+ tail_bound=1.,
19
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
22
+
23
+ if tails is None:
24
+ spline_fn = rational_quadratic_spline
25
+ spline_kwargs = {}
26
+ else:
27
+ spline_fn = unconstrained_rational_quadratic_spline
28
+ spline_kwargs = {
29
+ 'tails': tails,
30
+ 'tail_bound': tail_bound
31
+ }
32
+
33
+ outputs, logabsdet = spline_fn(
34
+ inputs=inputs,
35
+ unnormalized_widths=unnormalized_widths,
36
+ unnormalized_heights=unnormalized_heights,
37
+ unnormalized_derivatives=unnormalized_derivatives,
38
+ inverse=inverse,
39
+ min_bin_width=min_bin_width,
40
+ min_bin_height=min_bin_height,
41
+ min_derivative=min_derivative,
42
+ **spline_kwargs
43
+ )
44
+ return outputs, logabsdet
45
+
46
+
47
+ def searchsorted(bin_locations, inputs, eps=1e-6):
48
+ bin_locations[..., -1] += eps
49
+ return torch.sum(
50
+ inputs[..., None] >= bin_locations,
51
+ dim=-1
52
+ ) - 1
53
+
54
+
55
+ def unconstrained_rational_quadratic_spline(inputs,
56
+ unnormalized_widths,
57
+ unnormalized_heights,
58
+ unnormalized_derivatives,
59
+ inverse=False,
60
+ tails='linear',
61
+ tail_bound=1.,
62
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
65
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66
+ outside_interval_mask = ~inside_interval_mask
67
+
68
+ outputs = torch.zeros_like(inputs)
69
+ logabsdet = torch.zeros_like(inputs)
70
+
71
+ if tails == 'linear':
72
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
+ constant = np.log(np.exp(1 - min_derivative) - 1)
74
+ unnormalized_derivatives[..., 0] = constant
75
+ unnormalized_derivatives[..., -1] = constant
76
+
77
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
78
+ logabsdet[outside_interval_mask] = 0
79
+ else:
80
+ raise RuntimeError('{} tails are not implemented.'.format(tails))
81
+
82
+ outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89
+ min_bin_width=min_bin_width,
90
+ min_bin_height=min_bin_height,
91
+ min_derivative=min_derivative
92
+ )
93
+
94
+ return outputs, logabsdet
95
+
96
+ def rational_quadratic_spline(inputs,
97
+ unnormalized_widths,
98
+ unnormalized_heights,
99
+ unnormalized_derivatives,
100
+ inverse=False,
101
+ left=0., right=1., bottom=0., top=1.,
102
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
105
+ if torch.min(inputs) < left or torch.max(inputs) > right:
106
+ raise ValueError('Input to a transform is not within its domain')
107
+
108
+ num_bins = unnormalized_widths.shape[-1]
109
+
110
+ if min_bin_width * num_bins > 1.0:
111
+ raise ValueError('Minimal bin width too large for the number of bins')
112
+ if min_bin_height * num_bins > 1.0:
113
+ raise ValueError('Minimal bin height too large for the number of bins')
114
+
115
+ widths = F.softmax(unnormalized_widths, dim=-1)
116
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
+ cumwidths = torch.cumsum(widths, dim=-1)
118
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
+ cumwidths = (right - left) * cumwidths + left
120
+ cumwidths[..., 0] = left
121
+ cumwidths[..., -1] = right
122
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
+
124
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
+
126
+ heights = F.softmax(unnormalized_heights, dim=-1)
127
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
+ cumheights = torch.cumsum(heights, dim=-1)
129
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
+ cumheights = (top - bottom) * cumheights + bottom
131
+ cumheights[..., 0] = bottom
132
+ cumheights[..., -1] = top
133
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
134
+
135
+ if inverse:
136
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
137
+ else:
138
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
139
+
140
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142
+
143
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144
+ delta = heights / widths
145
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
146
+
147
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149
+
150
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
151
+
152
+ if inverse:
153
+ a = (((inputs - input_cumheights) * (input_derivatives
154
+ + input_derivatives_plus_one
155
+ - 2 * input_delta)
156
+ + input_heights * (input_delta - input_derivatives)))
157
+ b = (input_heights * input_derivatives
158
+ - (inputs - input_cumheights) * (input_derivatives
159
+ + input_derivatives_plus_one
160
+ - 2 * input_delta))
161
+ c = - input_delta * (inputs - input_cumheights)
162
+
163
+ discriminant = b.pow(2) - 4 * a * c
164
+ assert (discriminant >= 0).all()
165
+
166
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
167
+ outputs = root * input_bin_widths + input_cumwidths
168
+
169
+ theta_one_minus_theta = root * (1 - root)
170
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171
+ * theta_one_minus_theta)
172
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173
+ + 2 * input_delta * theta_one_minus_theta
174
+ + input_derivatives * (1 - root).pow(2))
175
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176
+
177
+ return outputs, -logabsdet
178
+ else:
179
+ theta = (inputs - input_cumwidths) / input_bin_widths
180
+ theta_one_minus_theta = theta * (1 - theta)
181
+
182
+ numerator = input_heights * (input_delta * theta.pow(2)
183
+ + input_derivatives * theta_one_minus_theta)
184
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185
+ * theta_one_minus_theta)
186
+ outputs = input_cumheights + numerator / denominator
187
+
188
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189
+ + 2 * input_delta * theta_one_minus_theta
190
+ + input_derivatives * (1 - theta).pow(2))
191
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192
+
193
+ return outputs, logabsdet
utils.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from json import loads
3
+ from torch import load, FloatTensor
4
+ from numpy import float32
5
+ import librosa
6
+
7
+
8
+ class HParams():
9
+ def __init__(self, **kwargs):
10
+ for k, v in kwargs.items():
11
+ if type(v) == dict:
12
+ v = HParams(**v)
13
+ self[k] = v
14
+
15
+ def keys(self):
16
+ return self.__dict__.keys()
17
+
18
+ def items(self):
19
+ return self.__dict__.items()
20
+
21
+ def values(self):
22
+ return self.__dict__.values()
23
+
24
+ def __len__(self):
25
+ return len(self.__dict__)
26
+
27
+ def __getitem__(self, key):
28
+ return getattr(self, key)
29
+
30
+ def __setitem__(self, key, value):
31
+ return setattr(self, key, value)
32
+
33
+ def __contains__(self, key):
34
+ return key in self.__dict__
35
+
36
+ def __repr__(self):
37
+ return self.__dict__.__repr__()
38
+
39
+
40
+ def load_checkpoint(checkpoint_path, model):
41
+ checkpoint_dict = load(checkpoint_path, map_location='cpu')
42
+ iteration = checkpoint_dict['iteration']
43
+ saved_state_dict = checkpoint_dict['model']
44
+ if hasattr(model, 'module'):
45
+ state_dict = model.module.state_dict()
46
+ else:
47
+ state_dict = model.state_dict()
48
+ new_state_dict = {}
49
+ for k, v in state_dict.items():
50
+ try:
51
+ new_state_dict[k] = saved_state_dict[k]
52
+ except:
53
+ logging.info("%s is not in the checkpoint" % k)
54
+ new_state_dict[k] = v
55
+ pass
56
+ if hasattr(model, 'module'):
57
+ model.module.load_state_dict(new_state_dict)
58
+ else:
59
+ model.load_state_dict(new_state_dict)
60
+ logging.info("Loaded checkpoint '{}' (iteration {})".format(
61
+ checkpoint_path, iteration))
62
+ return
63
+
64
+
65
+ def get_hparams_from_file(config_path):
66
+ with open(config_path, "r") as f:
67
+ data = f.read()
68
+ config = loads(data)
69
+
70
+ hparams = HParams(**config)
71
+ return hparams
72
+
73
+
74
+ def load_audio_to_torch(full_path, target_sampling_rate):
75
+ audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
76
+ return FloatTensor(audio.astype(float32))
vits_api.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import time
3
+ import infer
4
+ import config
5
+ import uvicorn
6
+ import asyncio
7
+ from starlette.responses import FileResponse
8
+ from fastapi import FastAPI, File, UploadFile, Form
9
+
10
+ app = FastAPI()
11
+
12
+ pth_path = config.pth_path
13
+ config_json = config.config_json
14
+ net_g_ms, hps = infer.load_model(config_json, pth_path)
15
+ sp_dict = {speaker: i for i, speaker in enumerate(hps.speakers)}
16
+
17
+
18
+ @app.get("/tts", response_class=FileResponse)
19
+ async def read_item(text: str, speaker: str):
20
+ print(text, speaker)
21
+ text = infer.clean_text(text)
22
+ infer.infer(text, net_g_ms, sp_dict[speaker], "demo")
23
+ return "./demo.mp3"
24
+
25
+
26
+ uvicorn.run(app, host="0.0.0.0")