Spaces:
Runtime error
Runtime error
Upload 7 files
Browse files- .gitignore +155 -155
- app.py +0 -1
- group.jpg +0 -0
- requirements.txt +0 -1
- useapi.py +171 -171
- utils.py +100 -100
.gitignore
CHANGED
@@ -1,155 +1,155 @@
|
|
1 |
-
# Byte-compiled / optimized / DLL files
|
2 |
-
__pycache__/
|
3 |
-
*.py[cod]
|
4 |
-
*$py.class
|
5 |
-
|
6 |
-
# C extensions
|
7 |
-
*.so
|
8 |
-
|
9 |
-
# Distribution / packaging
|
10 |
-
.Python
|
11 |
-
build/
|
12 |
-
develop-eggs/
|
13 |
-
dist/
|
14 |
-
downloads/
|
15 |
-
eggs/
|
16 |
-
.eggs/
|
17 |
-
lib/
|
18 |
-
lib64/
|
19 |
-
parts/
|
20 |
-
sdist/
|
21 |
-
var/
|
22 |
-
wheels/
|
23 |
-
share/python-wheels/
|
24 |
-
*.egg-info/
|
25 |
-
.installed.cfg
|
26 |
-
*.egg
|
27 |
-
MANIFEST
|
28 |
-
|
29 |
-
# PyInstaller
|
30 |
-
# Usually these files are written by a python script from a template
|
31 |
-
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
-
*.manifest
|
33 |
-
*.spec
|
34 |
-
|
35 |
-
# Installer logs
|
36 |
-
pip-log.txt
|
37 |
-
pip-delete-this-directory.txt
|
38 |
-
|
39 |
-
# Unit test / coverage reports
|
40 |
-
htmlcov/
|
41 |
-
.tox/
|
42 |
-
.nox/
|
43 |
-
.coverage
|
44 |
-
.coverage.*
|
45 |
-
.cache
|
46 |
-
nosetests.xml
|
47 |
-
coverage.xml
|
48 |
-
*.cover
|
49 |
-
*.py,cover
|
50 |
-
.hypothesis/
|
51 |
-
.pytest_cache/
|
52 |
-
cover/
|
53 |
-
|
54 |
-
# Translations
|
55 |
-
*.mo
|
56 |
-
*.pot
|
57 |
-
|
58 |
-
# Django stuff:
|
59 |
-
*.log
|
60 |
-
local_settings.py
|
61 |
-
db.sqlite3
|
62 |
-
db.sqlite3-journal
|
63 |
-
|
64 |
-
# Flask stuff:
|
65 |
-
instance/
|
66 |
-
.webassets-cache
|
67 |
-
|
68 |
-
# Scrapy stuff:
|
69 |
-
.scrapy
|
70 |
-
|
71 |
-
# Sphinx documentation
|
72 |
-
docs/_build/
|
73 |
-
|
74 |
-
# PyBuilder
|
75 |
-
.pybuilder/
|
76 |
-
target/
|
77 |
-
|
78 |
-
# Jupyter Notebook
|
79 |
-
.ipynb_checkpoints
|
80 |
-
|
81 |
-
# IPython
|
82 |
-
profile_default/
|
83 |
-
ipython_config.py
|
84 |
-
|
85 |
-
# pyenv
|
86 |
-
# For a library or package, you might want to ignore these files since the code is
|
87 |
-
# intended to run in multiple environments; otherwise, check them in:
|
88 |
-
# .python-version
|
89 |
-
|
90 |
-
# pipenv
|
91 |
-
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
-
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
-
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
-
# install all needed dependencies.
|
95 |
-
#Pipfile.lock
|
96 |
-
|
97 |
-
# poetry
|
98 |
-
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
-
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
-
# commonly ignored for libraries.
|
101 |
-
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
-
#poetry.lock
|
103 |
-
|
104 |
-
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
105 |
-
__pypackages__/
|
106 |
-
|
107 |
-
# Celery stuff
|
108 |
-
celerybeat-schedule
|
109 |
-
celerybeat.pid
|
110 |
-
|
111 |
-
# SageMath parsed files
|
112 |
-
*.sage.py
|
113 |
-
|
114 |
-
# Environments
|
115 |
-
.env
|
116 |
-
.venv
|
117 |
-
env/
|
118 |
-
venv/
|
119 |
-
ENV/
|
120 |
-
env.bak/
|
121 |
-
venv.bak/
|
122 |
-
|
123 |
-
# Spyder project settings
|
124 |
-
.spyderproject
|
125 |
-
.spyproject
|
126 |
-
|
127 |
-
# Rope project settings
|
128 |
-
.ropeproject
|
129 |
-
|
130 |
-
# mkdocs documentation
|
131 |
-
/site
|
132 |
-
|
133 |
-
# mypy
|
134 |
-
.mypy_cache/
|
135 |
-
.dmypy.json
|
136 |
-
dmypy.json
|
137 |
-
|
138 |
-
# Pyre type checker
|
139 |
-
.pyre/
|
140 |
-
|
141 |
-
# pytype static type analyzer
|
142 |
-
.pytype/
|
143 |
-
|
144 |
-
# Cython debug symbols
|
145 |
-
cython_debug/
|
146 |
-
|
147 |
-
# PyCharm
|
148 |
-
# JetBrains specific template is maintainted in a separate JetBrains.gitignore that can
|
149 |
-
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
150 |
-
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
151 |
-
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
152 |
-
#.idea/
|
153 |
-
|
154 |
-
#database
|
155 |
-
*.csv
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
105 |
+
__pypackages__/
|
106 |
+
|
107 |
+
# Celery stuff
|
108 |
+
celerybeat-schedule
|
109 |
+
celerybeat.pid
|
110 |
+
|
111 |
+
# SageMath parsed files
|
112 |
+
*.sage.py
|
113 |
+
|
114 |
+
# Environments
|
115 |
+
.env
|
116 |
+
.venv
|
117 |
+
env/
|
118 |
+
venv/
|
119 |
+
ENV/
|
120 |
+
env.bak/
|
121 |
+
venv.bak/
|
122 |
+
|
123 |
+
# Spyder project settings
|
124 |
+
.spyderproject
|
125 |
+
.spyproject
|
126 |
+
|
127 |
+
# Rope project settings
|
128 |
+
.ropeproject
|
129 |
+
|
130 |
+
# mkdocs documentation
|
131 |
+
/site
|
132 |
+
|
133 |
+
# mypy
|
134 |
+
.mypy_cache/
|
135 |
+
.dmypy.json
|
136 |
+
dmypy.json
|
137 |
+
|
138 |
+
# Pyre type checker
|
139 |
+
.pyre/
|
140 |
+
|
141 |
+
# pytype static type analyzer
|
142 |
+
.pytype/
|
143 |
+
|
144 |
+
# Cython debug symbols
|
145 |
+
cython_debug/
|
146 |
+
|
147 |
+
# PyCharm
|
148 |
+
# JetBrains specific template is maintainted in a separate JetBrains.gitignore that can
|
149 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
150 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
151 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
152 |
+
#.idea/
|
153 |
+
|
154 |
+
#database
|
155 |
+
*.csv
|
app.py
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
import random
|
3 |
import requests
|
4 |
import io
|
5 |
-
import gradio_i18n
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
from PIL import Image
|
|
|
2 |
import random
|
3 |
import requests
|
4 |
import io
|
|
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
from PIL import Image
|
group.jpg
CHANGED
requirements.txt
CHANGED
@@ -2,4 +2,3 @@ gradio>=4.40.0
|
|
2 |
jinja2>=3.1.2
|
3 |
httpx
|
4 |
pymongo
|
5 |
-
gradio-i18n==0.0.10
|
|
|
2 |
jinja2>=3.1.2
|
3 |
httpx
|
4 |
pymongo
|
|
useapi.py
CHANGED
@@ -1,172 +1,172 @@
|
|
1 |
-
import asyncio
|
2 |
-
import httpx
|
3 |
-
import json
|
4 |
-
import requests
|
5 |
-
import math
|
6 |
-
import os
|
7 |
-
client = httpx.AsyncClient()
|
8 |
-
# 请求URL
|
9 |
-
recommand_base_url = "https://" + os.getenv("recommand_base_url")
|
10 |
-
chat_url = "https://" + os.getenv("chat_url")
|
11 |
-
model_url = "https://" + os.getenv("model_url")
|
12 |
-
character_url = "https://" + os.getenv("character_url")
|
13 |
-
avatar_url = "https://" + os.getenv("avatar_url")
|
14 |
-
image_url = "https://" + os.getenv("image_url")
|
15 |
-
auth = os.getenv("auth")
|
16 |
-
#headers
|
17 |
-
def create_headers(language):
|
18 |
-
# 映射
|
19 |
-
language_mapping = {
|
20 |
-
'Chinese': 'zh',
|
21 |
-
'English': 'en',
|
22 |
-
'Japanese': 'ja',
|
23 |
-
'Korean': 'ko'
|
24 |
-
}
|
25 |
-
|
26 |
-
# 获取对应的语言代码,如果不存在则默认为 'zh'
|
27 |
-
language_code = language_mapping.get(language, 'zh')
|
28 |
-
|
29 |
-
return {
|
30 |
-
'X-Refresh-Token': '',
|
31 |
-
'X-Language': language_code,
|
32 |
-
'accept-language': '',
|
33 |
-
'User-Agent': 'Apifox/1.0.0 (https://apifox.com)',
|
34 |
-
'Authorization': auth,
|
35 |
-
'Accept': '*/*',
|
36 |
-
'Connection': 'keep-alive'
|
37 |
-
}
|
38 |
-
|
39 |
-
def recommand_character(language):
|
40 |
-
response = requests.get(character_url, headers=create_headers(language))
|
41 |
-
json_data = response.json()
|
42 |
-
characters = [{
|
43 |
-
"name": item["name"],
|
44 |
-
"_id": item["_id"],
|
45 |
-
"avatar_url": str(avatar_url + item['_id'] + "_avatar.webp")
|
46 |
-
} for item in json_data['data']]
|
47 |
-
return characters
|
48 |
-
|
49 |
-
def id_to_avatar(char_id):
|
50 |
-
return str(avatar_url + char_id + "_avatar.webp")
|
51 |
-
|
52 |
-
#GET模型列表
|
53 |
-
def get_models():
|
54 |
-
class ModelStorage:
|
55 |
-
def __init__(self):
|
56 |
-
self.models = []
|
57 |
-
|
58 |
-
def add_models(self, models):
|
59 |
-
for model_info in models:
|
60 |
-
# 过滤掉 'gpt-4o' 和 'gpt-4o-mini'
|
61 |
-
if model_info['model'] not in ['gpt-4o', 'gpt-4o-mini', 'mythomax-13b']:
|
62 |
-
if model_info['model'] in ['qwen-2-7b', 'gemma-2-9b', 'llama-3.1-8b', '
|
63 |
-
weight = 12 # Assign a low weight to reduce their frequency
|
64 |
-
else:
|
65 |
-
weight = int(math.ceil(24 / model_info['price'] + 0.5))
|
66 |
-
self.models.extend([model_info['model']] * weight)
|
67 |
-
|
68 |
-
model_storage = ModelStorage()
|
69 |
-
|
70 |
-
# 从指定的 URL 获取 JSON 数据
|
71 |
-
response = requests.get(model_url)
|
72 |
-
|
73 |
-
if response.status_code == 200:
|
74 |
-
data = response.json()
|
75 |
-
# 添加模型到 self.models
|
76 |
-
model_storage.add_models(data['data'])
|
77 |
-
return model_storage.models
|
78 |
-
|
79 |
-
#解析推荐json
|
80 |
-
def extract_recommand(data):
|
81 |
-
return [
|
82 |
-
{
|
83 |
-
"character_id": item["character_id"],
|
84 |
-
"avatar_url" : str(avatar_url+item["character_id"]+"_avatar.webp"),
|
85 |
-
"_id": item["_id"],
|
86 |
-
"image_url" : str(image_url+item["_id"]+"_large.webp"),
|
87 |
-
"description": item["description"],
|
88 |
-
"name": item["title"],
|
89 |
-
"opening": item["opening"]
|
90 |
-
}
|
91 |
-
for item in data["data"]["moments"]
|
92 |
-
]
|
93 |
-
|
94 |
-
#请求推荐API
|
95 |
-
async def recommand(char_id, language):
|
96 |
-
recommand_url = str(recommand_base_url + char_id)
|
97 |
-
response = await client.get(recommand_url, headers=create_headers(language))
|
98 |
-
json_data = response.json()
|
99 |
-
return extract_recommand(json_data)
|
100 |
-
|
101 |
-
async def fetch_stream(query, model, moment_id, session_id, bio, request_name, queue, language):
|
102 |
-
payload = {"query": query, "model": model, "bio": bio, "moment_id": moment_id}
|
103 |
-
if session_id:
|
104 |
-
payload["session_id"] = session_id
|
105 |
-
async with client.stream(
|
106 |
-
"POST", chat_url, json=payload, headers=create_headers(language)
|
107 |
-
) as response:
|
108 |
-
# 获取并返回 header
|
109 |
-
if response.status_code != 200:
|
110 |
-
await queue.put((request_name, "content", "Error Occur!"))
|
111 |
-
await queue.put((request_name, "end", None))
|
112 |
-
return
|
113 |
-
response_headers = dict(response.headers)
|
114 |
-
session_id = response_headers.get("x-session-id")
|
115 |
-
await queue.put((request_name, "header", response_headers))
|
116 |
-
|
117 |
-
# 流式处理响应内容
|
118 |
-
async for chunk in response.aiter_bytes():
|
119 |
-
await queue.put((request_name, "content", chunk.decode()))
|
120 |
-
|
121 |
-
# 标记流结束
|
122 |
-
await queue.put((request_name, "end", None))
|
123 |
-
|
124 |
-
return session_id
|
125 |
-
|
126 |
-
|
127 |
-
async def combine_streams(
|
128 |
-
query_a,
|
129 |
-
query_b,
|
130 |
-
model_a,
|
131 |
-
model_b,
|
132 |
-
moment_id_a,
|
133 |
-
moment_id_b,
|
134 |
-
session_id_a,
|
135 |
-
session_id_b,
|
136 |
-
bio_a,
|
137 |
-
bio_b,
|
138 |
-
language
|
139 |
-
):
|
140 |
-
queue = asyncio.Queue()
|
141 |
-
task_a = asyncio.create_task(
|
142 |
-
fetch_stream(
|
143 |
-
query_a, model_a, moment_id_a, session_id_a, bio_a, "requestA", queue, language
|
144 |
-
)
|
145 |
-
)
|
146 |
-
task_b = asyncio.create_task(
|
147 |
-
fetch_stream(
|
148 |
-
query_b, model_b, moment_id_b, session_id_b, bio_b, "requestB", queue, language
|
149 |
-
)
|
150 |
-
)
|
151 |
-
|
152 |
-
headers = {}
|
153 |
-
content = {"requestA": "", "requestB": ""}
|
154 |
-
active_streams = 2
|
155 |
-
|
156 |
-
while active_streams > 0:
|
157 |
-
request_name, data_type, data = await queue.get()
|
158 |
-
|
159 |
-
if data_type == "header":
|
160 |
-
headers[f"{request_name}_header"] = data
|
161 |
-
if len(headers) == 2:
|
162 |
-
yield headers
|
163 |
-
elif data_type == "content":
|
164 |
-
content[request_name] = data.strip()
|
165 |
-
if content["requestA"] or content["requestB"]:
|
166 |
-
yield content
|
167 |
-
content = {"requestA": "", "requestB": ""}
|
168 |
-
elif data_type == "end":
|
169 |
-
active_streams -= 1
|
170 |
-
|
171 |
-
session_id_a = await task_a
|
172 |
session_id_b = await task_b
|
|
|
1 |
+
import asyncio
|
2 |
+
import httpx
|
3 |
+
import json
|
4 |
+
import requests
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
client = httpx.AsyncClient()
|
8 |
+
# 请求URL
|
9 |
+
recommand_base_url = "https://" + os.getenv("recommand_base_url")
|
10 |
+
chat_url = "https://" + os.getenv("chat_url")
|
11 |
+
model_url = "https://" + os.getenv("model_url")
|
12 |
+
character_url = "https://" + os.getenv("character_url")
|
13 |
+
avatar_url = "https://" + os.getenv("avatar_url")
|
14 |
+
image_url = "https://" + os.getenv("image_url")
|
15 |
+
auth = os.getenv("auth")
|
16 |
+
#headers
|
17 |
+
def create_headers(language):
|
18 |
+
# 映射
|
19 |
+
language_mapping = {
|
20 |
+
'Chinese': 'zh',
|
21 |
+
'English': 'en',
|
22 |
+
'Japanese': 'ja',
|
23 |
+
'Korean': 'ko'
|
24 |
+
}
|
25 |
+
|
26 |
+
# 获取对应的语言代码,如果不存在则默认为 'zh'
|
27 |
+
language_code = language_mapping.get(language, 'zh')
|
28 |
+
|
29 |
+
return {
|
30 |
+
'X-Refresh-Token': '',
|
31 |
+
'X-Language': language_code,
|
32 |
+
'accept-language': '',
|
33 |
+
'User-Agent': 'Apifox/1.0.0 (https://apifox.com)',
|
34 |
+
'Authorization': auth,
|
35 |
+
'Accept': '*/*',
|
36 |
+
'Connection': 'keep-alive'
|
37 |
+
}
|
38 |
+
|
39 |
+
def recommand_character(language):
|
40 |
+
response = requests.get(character_url, headers=create_headers(language))
|
41 |
+
json_data = response.json()
|
42 |
+
characters = [{
|
43 |
+
"name": item["name"],
|
44 |
+
"_id": item["_id"],
|
45 |
+
"avatar_url": str(avatar_url + item['_id'] + "_avatar.webp")
|
46 |
+
} for item in json_data['data']]
|
47 |
+
return characters
|
48 |
+
|
49 |
+
def id_to_avatar(char_id):
|
50 |
+
return str(avatar_url + char_id + "_avatar.webp")
|
51 |
+
|
52 |
+
#GET模型列表
|
53 |
+
def get_models():
|
54 |
+
class ModelStorage:
|
55 |
+
def __init__(self):
|
56 |
+
self.models = []
|
57 |
+
|
58 |
+
def add_models(self, models):
|
59 |
+
for model_info in models:
|
60 |
+
# 过滤掉 'gpt-4o' 和 'gpt-4o-mini'
|
61 |
+
if model_info['model'] not in ['gpt-4o', 'gpt-4o-mini', 'mythomax-13b']:
|
62 |
+
if model_info['model'] in ['qwen-2-7b', 'gemma-2-9b', 'llama-3.1-8b', 'internLM-2.5-7b']:
|
63 |
+
weight = 12 # Assign a low weight to reduce their frequency
|
64 |
+
else:
|
65 |
+
weight = int(math.ceil(24 / model_info['price'] + 0.5))
|
66 |
+
self.models.extend([model_info['model']] * weight)
|
67 |
+
|
68 |
+
model_storage = ModelStorage()
|
69 |
+
|
70 |
+
# 从指定的 URL 获取 JSON 数据
|
71 |
+
response = requests.get(model_url)
|
72 |
+
|
73 |
+
if response.status_code == 200:
|
74 |
+
data = response.json()
|
75 |
+
# 添加模型到 self.models
|
76 |
+
model_storage.add_models(data['data'])
|
77 |
+
return model_storage.models
|
78 |
+
|
79 |
+
#解析推荐json
|
80 |
+
def extract_recommand(data):
|
81 |
+
return [
|
82 |
+
{
|
83 |
+
"character_id": item["character_id"],
|
84 |
+
"avatar_url" : str(avatar_url+item["character_id"]+"_avatar.webp"),
|
85 |
+
"_id": item["_id"],
|
86 |
+
"image_url" : str(image_url+item["_id"]+"_large.webp"),
|
87 |
+
"description": item["description"],
|
88 |
+
"name": item["title"],
|
89 |
+
"opening": item["opening"]
|
90 |
+
}
|
91 |
+
for item in data["data"]["moments"]
|
92 |
+
]
|
93 |
+
|
94 |
+
#请求推荐API
|
95 |
+
async def recommand(char_id, language):
|
96 |
+
recommand_url = str(recommand_base_url + char_id)
|
97 |
+
response = await client.get(recommand_url, headers=create_headers(language))
|
98 |
+
json_data = response.json()
|
99 |
+
return extract_recommand(json_data)
|
100 |
+
|
101 |
+
async def fetch_stream(query, model, moment_id, session_id, bio, request_name, queue, language):
|
102 |
+
payload = {"query": query, "model": model, "bio": bio, "moment_id": moment_id}
|
103 |
+
if session_id:
|
104 |
+
payload["session_id"] = session_id
|
105 |
+
async with client.stream(
|
106 |
+
"POST", chat_url, json=payload, headers=create_headers(language)
|
107 |
+
) as response:
|
108 |
+
# 获取并返回 header
|
109 |
+
if response.status_code != 200:
|
110 |
+
await queue.put((request_name, "content", "Error Occur!"))
|
111 |
+
await queue.put((request_name, "end", None))
|
112 |
+
return
|
113 |
+
response_headers = dict(response.headers)
|
114 |
+
session_id = response_headers.get("x-session-id")
|
115 |
+
await queue.put((request_name, "header", response_headers))
|
116 |
+
|
117 |
+
# 流式处理响应内容
|
118 |
+
async for chunk in response.aiter_bytes():
|
119 |
+
await queue.put((request_name, "content", chunk.decode()))
|
120 |
+
|
121 |
+
# 标记流结束
|
122 |
+
await queue.put((request_name, "end", None))
|
123 |
+
|
124 |
+
return session_id
|
125 |
+
|
126 |
+
|
127 |
+
async def combine_streams(
|
128 |
+
query_a,
|
129 |
+
query_b,
|
130 |
+
model_a,
|
131 |
+
model_b,
|
132 |
+
moment_id_a,
|
133 |
+
moment_id_b,
|
134 |
+
session_id_a,
|
135 |
+
session_id_b,
|
136 |
+
bio_a,
|
137 |
+
bio_b,
|
138 |
+
language
|
139 |
+
):
|
140 |
+
queue = asyncio.Queue()
|
141 |
+
task_a = asyncio.create_task(
|
142 |
+
fetch_stream(
|
143 |
+
query_a, model_a, moment_id_a, session_id_a, bio_a, "requestA", queue, language
|
144 |
+
)
|
145 |
+
)
|
146 |
+
task_b = asyncio.create_task(
|
147 |
+
fetch_stream(
|
148 |
+
query_b, model_b, moment_id_b, session_id_b, bio_b, "requestB", queue, language
|
149 |
+
)
|
150 |
+
)
|
151 |
+
|
152 |
+
headers = {}
|
153 |
+
content = {"requestA": "", "requestB": ""}
|
154 |
+
active_streams = 2
|
155 |
+
|
156 |
+
while active_streams > 0:
|
157 |
+
request_name, data_type, data = await queue.get()
|
158 |
+
|
159 |
+
if data_type == "header":
|
160 |
+
headers[f"{request_name}_header"] = data
|
161 |
+
if len(headers) == 2:
|
162 |
+
yield headers
|
163 |
+
elif data_type == "content":
|
164 |
+
content[request_name] = data.strip()
|
165 |
+
if content["requestA"] or content["requestB"]:
|
166 |
+
yield content
|
167 |
+
content = {"requestA": "", "requestB": ""}
|
168 |
+
elif data_type == "end":
|
169 |
+
active_streams -= 1
|
170 |
+
|
171 |
+
session_id_a = await task_a
|
172 |
session_id_b = await task_b
|
utils.py
CHANGED
@@ -1,101 +1,101 @@
|
|
1 |
-
import time
|
2 |
-
from pymongo import MongoClient
|
3 |
-
import pandas as pd
|
4 |
-
import math
|
5 |
-
import os
|
6 |
-
|
7 |
-
# MongoDB连接配置
|
8 |
-
client = MongoClient(os.getenv("client_link"))
|
9 |
-
db = client.get_database('roleplay')
|
10 |
-
collection = db.get_collection('model_stats')
|
11 |
-
|
12 |
-
def update_model_stats(model1_name, model2_name, winner, turn, anony, language):
|
13 |
-
# 获取当前时间戳
|
14 |
-
tstamp = time.time()
|
15 |
-
|
16 |
-
# 插入数据到MongoDB
|
17 |
-
collection.insert_one({
|
18 |
-
"Model 1": model1_name,
|
19 |
-
"Model 2": model2_name,
|
20 |
-
"Winner": winner,
|
21 |
-
"Turn": turn,
|
22 |
-
"Anony": anony,
|
23 |
-
"Language": language,
|
24 |
-
"tstamp": tstamp
|
25 |
-
})
|
26 |
-
|
27 |
-
def calculate_elo(winner_elo, loser_elo, k=30, outcome=1):
|
28 |
-
"""
|
29 |
-
winner_elo: Elo score of the winner before the game
|
30 |
-
loser_elo: Elo score of the loser before the game
|
31 |
-
k: K-factor in Elo calculation
|
32 |
-
outcome: 1 if winner won, 0.5 if tie, 0 if loser won (inverted)
|
33 |
-
"""
|
34 |
-
expected_win = 1 / (1 + math.pow(10, (loser_elo - winner_elo) / 400))
|
35 |
-
new_winner_elo = winner_elo + k * (outcome - expected_win)
|
36 |
-
return new_winner_elo
|
37 |
-
|
38 |
-
def load_dataframe():
|
39 |
-
# 从MongoDB读取数据
|
40 |
-
cursor = collection.find({})
|
41 |
-
|
42 |
-
# 将游标中的数据转换为DataFrame
|
43 |
-
data = pd.DataFrame(list(cursor))
|
44 |
-
|
45 |
-
# 创建模型名称的唯一列表
|
46 |
-
models = pd.unique(data[['Model 1', 'Model 2']].values.ravel('K'))
|
47 |
-
|
48 |
-
# 初始化结果字典
|
49 |
-
results = {'模型名称': [], '参赛次数': [], '胜利次数': [], 'ELO': []}
|
50 |
-
elo_dict = {model: 1000 for model in models} # 初始化ELO分数为1000
|
51 |
-
|
52 |
-
for _, row in data.iterrows():
|
53 |
-
model1 = row['Model 1']
|
54 |
-
model2 = row['Model 2']
|
55 |
-
winner = row['Winner']
|
56 |
-
|
57 |
-
if winner == 'Model 1':
|
58 |
-
elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=1)
|
59 |
-
elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=0)
|
60 |
-
elif winner == 'Model 2':
|
61 |
-
elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=1)
|
62 |
-
elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=0)
|
63 |
-
elif winner == 'tie':
|
64 |
-
elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=0.8)
|
65 |
-
elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=0.8)
|
66 |
-
elif winner == 'bothbad':
|
67 |
-
elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=0.1)
|
68 |
-
elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=0.1)
|
69 |
-
|
70 |
-
for model in models:
|
71 |
-
count = data['Model 1'].value_counts().get(model, 0) + data['Model 2'].value_counts().get(model, 0)
|
72 |
-
win_count = 0
|
73 |
-
win_count += len(data[(data['Winner'] == 'Model 1') & (data['Model 1'] == model)])
|
74 |
-
win_count += len(data[(data['Winner'] == 'Model 2') & (data['Model 2'] == model)])
|
75 |
-
win_count += len(data[(data['Winner'] == 'tie') & ((data['Model 1'] == model) | (data['Model 2'] == model))])
|
76 |
-
results['模型名称'].append(model)
|
77 |
-
results['参赛次数'].append(count)
|
78 |
-
results['胜利次数'].append(win_count)
|
79 |
-
results['ELO'].append(round(elo_dict[model]))
|
80 |
-
|
81 |
-
# 将结果字典转换为DataFrame
|
82 |
-
result_df = pd.DataFrame(results)
|
83 |
-
|
84 |
-
# 计算胜率并排序
|
85 |
-
result_df["模型胜率"] = (result_df['胜利次数'] / result_df['参赛次数']) * 100
|
86 |
-
result_df = result_df.sort_values(by="模型胜率", ascending=False)
|
87 |
-
result_df["模型胜率"] = result_df["模型胜率"].map("{:.2f}%".format)
|
88 |
-
|
89 |
-
return result_df
|
90 |
-
|
91 |
-
def change_name(old,new):
|
92 |
-
collection.update_many(
|
93 |
-
{ "Model 1": old },
|
94 |
-
{ "$set": { "Model 1": new } }
|
95 |
-
)
|
96 |
-
|
97 |
-
# 更新 Model 2 字段
|
98 |
-
collection.update_many(
|
99 |
-
{ "Model 2": old },
|
100 |
-
{ "$set": { "Model 2": new } }
|
101 |
)
|
|
|
1 |
+
import time
|
2 |
+
from pymongo import MongoClient
|
3 |
+
import pandas as pd
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
|
7 |
+
# MongoDB连接配置
|
8 |
+
client = MongoClient(os.getenv("client_link"))
|
9 |
+
db = client.get_database('roleplay')
|
10 |
+
collection = db.get_collection('model_stats')
|
11 |
+
|
12 |
+
def update_model_stats(model1_name, model2_name, winner, turn, anony, language):
|
13 |
+
# 获取当前时间戳
|
14 |
+
tstamp = time.time()
|
15 |
+
|
16 |
+
# 插入数据到MongoDB
|
17 |
+
collection.insert_one({
|
18 |
+
"Model 1": model1_name,
|
19 |
+
"Model 2": model2_name,
|
20 |
+
"Winner": winner,
|
21 |
+
"Turn": turn,
|
22 |
+
"Anony": anony,
|
23 |
+
"Language": language,
|
24 |
+
"tstamp": tstamp
|
25 |
+
})
|
26 |
+
|
27 |
+
def calculate_elo(winner_elo, loser_elo, k=30, outcome=1):
|
28 |
+
"""
|
29 |
+
winner_elo: Elo score of the winner before the game
|
30 |
+
loser_elo: Elo score of the loser before the game
|
31 |
+
k: K-factor in Elo calculation
|
32 |
+
outcome: 1 if winner won, 0.5 if tie, 0 if loser won (inverted)
|
33 |
+
"""
|
34 |
+
expected_win = 1 / (1 + math.pow(10, (loser_elo - winner_elo) / 400))
|
35 |
+
new_winner_elo = winner_elo + k * (outcome - expected_win)
|
36 |
+
return new_winner_elo
|
37 |
+
|
38 |
+
def load_dataframe():
|
39 |
+
# 从MongoDB读取数据
|
40 |
+
cursor = collection.find({})
|
41 |
+
|
42 |
+
# 将游标中的数据转换为DataFrame
|
43 |
+
data = pd.DataFrame(list(cursor))
|
44 |
+
|
45 |
+
# 创建模型名称的唯一列表
|
46 |
+
models = pd.unique(data[['Model 1', 'Model 2']].values.ravel('K'))
|
47 |
+
|
48 |
+
# 初始化结果字典
|
49 |
+
results = {'模型名称': [], '参赛次数': [], '胜利次数': [], 'ELO': []}
|
50 |
+
elo_dict = {model: 1000 for model in models} # 初始化ELO分数为1000
|
51 |
+
|
52 |
+
for _, row in data.iterrows():
|
53 |
+
model1 = row['Model 1']
|
54 |
+
model2 = row['Model 2']
|
55 |
+
winner = row['Winner']
|
56 |
+
|
57 |
+
if winner == 'Model 1':
|
58 |
+
elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=1)
|
59 |
+
elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=0)
|
60 |
+
elif winner == 'Model 2':
|
61 |
+
elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=1)
|
62 |
+
elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=0)
|
63 |
+
elif winner == 'tie':
|
64 |
+
elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=0.8)
|
65 |
+
elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=0.8)
|
66 |
+
elif winner == 'bothbad':
|
67 |
+
elo_dict[model1] = calculate_elo(elo_dict[model1], elo_dict[model2], outcome=0.1)
|
68 |
+
elo_dict[model2] = calculate_elo(elo_dict[model2], elo_dict[model1], outcome=0.1)
|
69 |
+
|
70 |
+
for model in models:
|
71 |
+
count = data['Model 1'].value_counts().get(model, 0) + data['Model 2'].value_counts().get(model, 0)
|
72 |
+
win_count = 0
|
73 |
+
win_count += len(data[(data['Winner'] == 'Model 1') & (data['Model 1'] == model)])
|
74 |
+
win_count += len(data[(data['Winner'] == 'Model 2') & (data['Model 2'] == model)])
|
75 |
+
win_count += len(data[(data['Winner'] == 'tie') & ((data['Model 1'] == model) | (data['Model 2'] == model))])
|
76 |
+
results['模型名称'].append(model)
|
77 |
+
results['参赛次数'].append(count)
|
78 |
+
results['胜利次数'].append(win_count)
|
79 |
+
results['ELO'].append(round(elo_dict[model]))
|
80 |
+
|
81 |
+
# 将结果字典转换为DataFrame
|
82 |
+
result_df = pd.DataFrame(results)
|
83 |
+
|
84 |
+
# 计算胜率并排序
|
85 |
+
result_df["模型胜率"] = (result_df['胜利次数'] / result_df['参赛次数']) * 100
|
86 |
+
result_df = result_df.sort_values(by="模型胜率", ascending=False)
|
87 |
+
result_df["模型胜率"] = result_df["模型胜率"].map("{:.2f}%".format)
|
88 |
+
|
89 |
+
return result_df
|
90 |
+
|
91 |
+
def change_name(old,new):
|
92 |
+
collection.update_many(
|
93 |
+
{ "Model 1": old },
|
94 |
+
{ "$set": { "Model 1": new } }
|
95 |
+
)
|
96 |
+
|
97 |
+
# 更新 Model 2 字段
|
98 |
+
collection.update_many(
|
99 |
+
{ "Model 2": old },
|
100 |
+
{ "$set": { "Model 2": new } }
|
101 |
)
|