Spaces:
Running
on
Zero
Running
on
Zero
import mesh2sdf.core | |
import numpy as np | |
import skimage.measure | |
import trimesh | |
def normalize_vertices(vertices, scale=0.9): | |
bbmin, bbmax = vertices.min(0), vertices.max(0) | |
center = (bbmin + bbmax) * 0.5 | |
scale = 2.0 * scale / (bbmax - bbmin).max() | |
vertices = (vertices - center) * scale | |
return vertices, center, scale | |
def export_to_watertight(normalized_mesh, octree_depth: int = 7): | |
""" | |
Convert the non-watertight mesh to watertight. | |
Args: | |
input_path (str): normalized path | |
octree_depth (int): | |
Returns: | |
mesh(trimesh.Trimesh): watertight mesh | |
""" | |
size = 2 ** octree_depth | |
level = 2 / size | |
scaled_vertices, to_orig_center, to_orig_scale = normalize_vertices(normalized_mesh.vertices) | |
sdf = mesh2sdf.core.compute(scaled_vertices, normalized_mesh.faces, size=size) | |
vertices, faces, normals, _ = skimage.measure.marching_cubes(np.abs(sdf), level) | |
# watertight mesh | |
vertices = vertices / size * 2 - 1 # -1 to 1 | |
vertices = vertices / to_orig_scale + to_orig_center | |
# vertices = vertices / to_orig_scale + to_orig_center | |
mesh = trimesh.Trimesh(vertices, faces, normals=normals) | |
return mesh | |
def process_mesh_to_pc(mesh_list, marching_cubes = False, sample_num = 4096): | |
# mesh_list : list of trimesh | |
pc_normal_list = [] | |
return_mesh_list = [] | |
for mesh in mesh_list: | |
if marching_cubes: | |
mesh = export_to_watertight(mesh) | |
print("MC over!") | |
return_mesh_list.append(mesh) | |
points, face_idx = mesh.sample(sample_num, return_index=True) | |
normals = mesh.face_normals[face_idx] | |
pc_normal = np.concatenate([points, normals], axis=-1, dtype=np.float16) | |
pc_normal_list.append(pc_normal) | |
print("process mesh success") | |
return pc_normal_list, return_mesh_list | |