import gradio as gr import numpy as np from PIL import Image import requests import xgboost import hopsworks import joblib project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("titanic_modal", version=1) model_dir = model.download() model = joblib.load(model_dir + "/titanic_model.pkl") def titanic(sex, age, pclass, parch, embarked): input_list = [] if pclass=='1 First Class': input_list.append(1) elif pclass=='2 Second Class': input_list.append(2) else: input_list.append(3) if sex=='Female': input_list.append(1) else: input_list.append(0) input_list.append(age) input_list.append(parch) if embarked=='C (Cherbourg)': input_list.append(2) elif embarked=='S (Southampton)': input_list.append(1) else: input_list.append(0) # 'res' is a list of predictions returned as the label. res = model.predict(np.asarray(input_list,dtype=object).reshape(1,-1)) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. flower_url = "https://raw.githubusercontent.com/avatar46/ID2223_lab1/main/images/" + str(res[0]) + ".png" img = Image.open(requests.get(flower_url, stream=True).raw) return img demo = gr.Interface( fn=titanic, title="Titanic Survival Predictive Analytics", description="Experiment with different entries to predict if the person will survive.", allow_flagging="never", ### Create user interface with 5 inputs inputs=[ gr.inputs.Radio(default='Female', label="Gender", choices=['Female','Male']), gr.inputs.Slider(0,150,label='Age'), gr.inputs.Radio(default='1 First Class', label="Passenger Class ", choices=['1 First Class', '2 Second Class', '3 Third Class']), gr.inputs.Number(default=1.0, label="Parch: # of parents / children aboard the Titanic "), gr.inputs.Radio(default='C (Cherbourg)', label="Embarkation Port", choices=['C (Cherbourg)', 'Q (Queenstown)', 'S (Southampton)']), ], outputs=gr.Image(type="pil")) demo.launch()