Spaces:
Runtime error
Runtime error
File size: 7,833 Bytes
c766ff7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
import numpy as np
import argparse
import imageio
import torch
from einops import rearrange
from diffusers import DDIMScheduler, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer
import torchvision
from controlnet_aux.processor import Processor
from models.pipeline_controlvideo import ControlVideoPipeline
from models.util import save_videos_grid, read_video
from models.unet import UNet3DConditionModel
from models.controlnet import ControlNetModel3D
from models.RIFE.IFNet_HDv3 import IFNet
device = "cuda"
sd_path = "checkpoints/stable-diffusion-v1-5"
inter_path = "checkpoints/flownet.pkl"
controlnet_dict_version = {
"v10":{
"openpose": "checkpoints/sd-controlnet-openpose",
"depth_midas": "checkpoints/sd-controlnet-depth",
"canny": "checkpoints/sd-controlnet-canny",
},
"v11": {
"softedge_pidinet": "checkpoints/control_v11p_sd15_softedge",
"softedge_pidsafe": "checkpoints/control_v11p_sd15_softedge",
"softedge_hed": "checkpoints/control_v11p_sd15_softedge",
"softedge_hedsafe": "checkpoints/control_v11p_sd15_softedge",
"scribble_hed": "checkpoints/control_v11p_sd15_scribble",
"scribble_pidinet": "checkpoints/control_v11p_sd15_scribble",
"lineart_anime": "checkpoints/control_v11p_sd15_lineart_anime",
"lineart_coarse": "checkpoints/control_v11p_sd15_lineart",
"lineart_realistic": "checkpoints/control_v11p_sd15_lineart",
"depth_midas": "checkpoints/control_v11f1p_sd15_depth",
"depth_leres": "checkpoints/control_v11f1p_sd15_depth",
"depth_leres++": "checkpoints/control_v11f1p_sd15_depth",
"depth_zoe": "checkpoints/control_v11f1p_sd15_depth",
"canny": "checkpoints/control_v11p_sd15_canny",
"openpose": "checkpoints/control_v11p_sd15_openpose",
"openpose_face": "checkpoints/control_v11p_sd15_openpose",
"openpose_faceonly": "checkpoints/control_v11p_sd15_openpose",
"openpose_full": "checkpoints/control_v11p_sd15_openpose",
"openpose_hand": "checkpoints/control_v11p_sd15_openpose",
"normal_bae": "checkpoints/control_v11p_sd15_normalbae"
}
}
# load processor from processor_id
# options are:
# ["canny", "depth_leres", "depth_leres++", "depth_midas", "depth_zoe", "lineart_anime",
# "lineart_coarse", "lineart_realistic", "mediapipe_face", "mlsd", "normal_bae", "normal_midas",
# "openpose", "openpose_face", "openpose_faceonly", "openpose_full", "openpose_hand",
# "scribble_hed, "scribble_pidinet", "shuffle", "softedge_hed", "softedge_hedsafe",
# "softedge_pidinet", "softedge_pidsafe"]
POS_PROMPT = " ,best quality, extremely detailed, HD, ultra-realistic, 8K, HQ, masterpiece, trending on artstation, art, smooth"
NEG_PROMPT = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic"
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, required=True, help="Text description of target video")
parser.add_argument("--video_path", type=str, required=True, help="Path to a source video")
parser.add_argument("--output_path", type=str, default="./outputs", help="Directory of output")
parser.add_argument("--condition", type=str, default="depth", help="Condition of structure sequence")
parser.add_argument("--video_length", type=int, default=15, help="Length of synthesized video")
parser.add_argument("--height", type=int, default=512, help="Height of synthesized video, and should be a multiple of 32")
parser.add_argument("--width", type=int, default=512, help="Width of synthesized video, and should be a multiple of 32")
parser.add_argument("--smoother_steps", nargs='+', default=[19, 20], type=int, help="Timesteps at which using interleaved-frame smoother")
parser.add_argument("--is_long_video", action='store_true', help="Whether to use hierarchical sampler to produce long video")
parser.add_argument("--seed", type=int, default=42, help="Random seed of generator")
parser.add_argument("--version", type=str, default='v10', choices=["v10", "v11"], help="Version of ControlNet")
parser.add_argument("--frame_rate", type=int, default=None, help="The frame rate of loading input video. Default rate is computed according to video length.")
parser.add_argument("--temp_video_name", type=str, default=None, help="Default video name")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
os.makedirs(args.output_path, exist_ok=True)
# Height and width should be a multiple of 32
args.height = (args.height // 32) * 32
args.width = (args.width // 32) * 32
processor = Processor(args.condition)
controlnet_dict = controlnet_dict_version[args.version]
tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").to(dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(dtype=torch.float16)
unet = UNet3DConditionModel.from_pretrained_2d(sd_path, subfolder="unet").to(dtype=torch.float16)
controlnet = ControlNetModel3D.from_pretrained_2d(controlnet_dict[args.condition]).to(dtype=torch.float16)
interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16)
scheduler=DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
pipe = ControlVideoPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
controlnet=controlnet, interpolater=interpolater, scheduler=scheduler,
)
pipe.enable_vae_slicing()
pipe.enable_xformers_memory_efficient_attention()
pipe.to(device)
generator = torch.Generator(device="cuda")
generator.manual_seed(args.seed)
# Step 1. Read a video
video = read_video(video_path=args.video_path, video_length=args.video_length, width=args.width, height=args.height, frame_rate=args.frame_rate)
# Save source video
original_pixels = rearrange(video, "(b f) c h w -> b c f h w", b=1)
save_videos_grid(original_pixels, os.path.join(args.output_path, "source_video.mp4"), rescale=True)
# Step 2. Parse a video to conditional frames
t2i_transform = torchvision.transforms.ToPILImage()
pil_annotation = []
for frame in video:
pil_frame = t2i_transform(frame)
pil_annotation.append(processor(pil_frame, to_pil=True))
# Save condition video
video_cond = [np.array(p).astype(np.uint8) for p in pil_annotation]
imageio.mimsave(os.path.join(args.output_path, f"{args.condition}_condition.mp4"), video_cond, fps=8)
# Reduce memory (optional)
del processor; torch.cuda.empty_cache()
# Step 3. inference
if args.is_long_video:
window_size = int(np.sqrt(args.video_length))
sample = pipe.generate_long_video(args.prompt + POS_PROMPT, video_length=args.video_length, frames=pil_annotation,
num_inference_steps=50, smooth_steps=args.smoother_steps, window_size=window_size,
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT,
width=args.width, height=args.height
).videos
else:
sample = pipe(args.prompt + POS_PROMPT, video_length=args.video_length, frames=pil_annotation,
num_inference_steps=50, smooth_steps=args.smoother_steps,
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT,
width=args.width, height=args.height
).videos
args.temp_video_name = args.prompt if args.temp_video_name is None else args.temp_video_name
save_videos_grid(sample, f"{args.output_path}/{args.temp_video_name}.mp4") |