Init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +124 -0
- configs/SEMat_HQ-SAM.py +48 -0
- configs/SEMat_SAM.py +51 -0
- configs/SEMat_SAM2.py +57 -0
- configs/common/optimizer.py +26 -0
- configs/common/scheduler.py +13 -0
- configs/common/train.py +17 -0
- configs/semantic_enhanced_matting/dataloader.py +62 -0
- configs/semantic_enhanced_matting/model.py +35 -0
- data/__init__.py +1 -0
- data/__pycache__/__init__.cpython-38.pyc +0 -0
- data/__pycache__/dim_dataset.cpython-38.pyc +0 -0
- data/__pycache__/evaluate.cpython-38.pyc +0 -0
- data/__pycache__/rand_augment.cpython-38.pyc +0 -0
- data/coconut_dataset.py +377 -0
- data/dim_dataset.py +1476 -0
- data/evaluate.py +102 -0
- data/p3m10k_dataset.py +325 -0
- data/rand_augment.py +196 -0
- data/refmatte_dataset.py +418 -0
- engine/__init__.py +1 -0
- engine/hooks.py +52 -0
- engine/mattingtrainer.py +171 -0
- modeling/__init__.py +5 -0
- modeling/__pycache__/__init__.cpython-38.pyc +0 -0
- modeling/backbone/__init__.py +2 -0
- modeling/backbone/__pycache__/__init__.cpython-38.pyc +0 -0
- modeling/backbone/__pycache__/backbone.cpython-38.pyc +0 -0
- modeling/backbone/__pycache__/utils.cpython-38.pyc +0 -0
- modeling/backbone/__pycache__/vit.cpython-38.pyc +0 -0
- modeling/backbone/backbone.py +74 -0
- modeling/backbone/utils.py +186 -0
- modeling/backbone/vit.py +404 -0
- modeling/criterion/__init__.py +1 -0
- modeling/criterion/__pycache__/__init__.cpython-38.pyc +0 -0
- modeling/criterion/__pycache__/matting_criterion.cpython-38.pyc +0 -0
- modeling/criterion/matting_criterion.py +271 -0
- modeling/decoder/__init__.py +1 -0
- modeling/decoder/__pycache__/__init__.cpython-38.pyc +0 -0
- modeling/decoder/__pycache__/detail_capture.cpython-38.pyc +0 -0
- modeling/decoder/__pycache__/unet_detail_capture.cpython-38.pyc +0 -0
- modeling/decoder/detail_capture.py +185 -0
- modeling/decoder/unet_detail_capture.py +429 -0
- modeling/meta_arch/__init__.py +1 -0
- modeling/meta_arch/__pycache__/__init__.cpython-38.pyc +0 -0
- modeling/meta_arch/__pycache__/sam_hq_matting.cpython-38.pyc +0 -0
- modeling/meta_arch/sam_hq_matting.py +671 -0
- modeling/semantic_enhanced_matting/__init__.py +17 -0
- modeling/semantic_enhanced_matting/__pycache__/__init__.cpython-38.pyc +0 -0
- modeling/semantic_enhanced_matting/__pycache__/automatic_mask_generator.cpython-38.pyc +0 -0
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_image_prompter import ImagePrompter
|
3 |
+
from detectron2.config import LazyConfig, instantiate
|
4 |
+
from detectron2.checkpoint import DetectionCheckpointer
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
|
10 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
+
model_choice = {
|
12 |
+
'SAM': None,
|
13 |
+
'HQ-SAM': None,
|
14 |
+
'SAM2': None
|
15 |
+
}
|
16 |
+
|
17 |
+
for model_type in model_choice.keys():
|
18 |
+
model_choice[model_type] = hf_hub_download(repo_id="XiaRho/SEMat", filename=f"SEMat_{model_type}.pth", repo_type="model")
|
19 |
+
|
20 |
+
def load_model(model_type='SAM2'):
|
21 |
+
assert model_type in model_choice.keys()
|
22 |
+
config_path = './configs/SEMat_{}.py'.format(model_type)
|
23 |
+
cfg = LazyConfig.load(config_path)
|
24 |
+
|
25 |
+
if hasattr(cfg.model.sam_model, 'ckpt_path'):
|
26 |
+
cfg.model.sam_model.ckpt_path = None
|
27 |
+
else:
|
28 |
+
cfg.model.sam_model.checkpoint = None
|
29 |
+
model = instantiate(cfg.model)
|
30 |
+
if model.lora_rank is not None:
|
31 |
+
model.init_lora()
|
32 |
+
model.to(DEVICE)
|
33 |
+
DetectionCheckpointer(model).load(model_choice[model_type])
|
34 |
+
model.eval()
|
35 |
+
return model, model_type
|
36 |
+
|
37 |
+
def transform_image_bbox(prompts):
|
38 |
+
if len(prompts["points"]) != 1:
|
39 |
+
raise gr.Error("Please input only one BBox.", duration=5)
|
40 |
+
[[x1, y1, idx_3, x2, y2, idx_6]] = prompts["points"]
|
41 |
+
if idx_3 != 2 or idx_6 != 3:
|
42 |
+
raise gr.Error("Please input BBox instead of point.", duration=5)
|
43 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
44 |
+
|
45 |
+
img = prompts["image"]
|
46 |
+
ori_H, ori_W, _ = img.shape
|
47 |
+
|
48 |
+
scale = 1024 * 1.0 / max(ori_H, ori_W)
|
49 |
+
new_H, new_W = ori_H * scale, ori_W * scale
|
50 |
+
new_W = int(new_W + 0.5)
|
51 |
+
new_H = int(new_H + 0.5)
|
52 |
+
|
53 |
+
img = cv2.resize(img, (new_W, new_H), interpolation=cv2.INTER_LINEAR)
|
54 |
+
padding = np.zeros([1024, 1024, 3], dtype=img.dtype)
|
55 |
+
padding[: new_H, : new_W, :] = img
|
56 |
+
img = padding
|
57 |
+
# img = img[:, :, ::-1].transpose((2, 0, 1)).astype(np.float32) / 255.0
|
58 |
+
img = img.transpose((2, 0, 1)).astype(np.float32) / 255.0
|
59 |
+
|
60 |
+
[[x1, y1, _, x2, y2, _]] = prompts["points"]
|
61 |
+
x1, y1, x2, y2 = int(x1 * scale + 0.5), int(y1 * scale + 0.5), int(x2 * scale + 0.5), int(y2 * scale + 0.5)
|
62 |
+
bbox = np.clip(np.array([[x1, y1, x2, y2]]) * 1.0, 0, 1023.0)
|
63 |
+
|
64 |
+
return img, bbox, (ori_H, ori_W), (new_H, new_W)
|
65 |
+
|
66 |
+
if __name__ == '__main__':
|
67 |
+
|
68 |
+
model, model_type = load_model()
|
69 |
+
|
70 |
+
def inference_image(prompts, input_model_type):
|
71 |
+
|
72 |
+
global model_type
|
73 |
+
global model
|
74 |
+
|
75 |
+
if input_model_type != model_type:
|
76 |
+
gr.Info('Loading SEMat of {} version.'.format(input_model_type), duration=5)
|
77 |
+
_model, _ = load_model(input_model_type)
|
78 |
+
model_type = input_model_type
|
79 |
+
model = _model
|
80 |
+
|
81 |
+
image, bbox, ori_H_W, pad_H_W = transform_image_bbox(prompts)
|
82 |
+
input_data = {
|
83 |
+
'image': torch.from_numpy(image)[None].to(model.device),
|
84 |
+
'bbox': torch.from_numpy(bbox)[None].to(model.device),
|
85 |
+
}
|
86 |
+
|
87 |
+
with torch.no_grad():
|
88 |
+
inputs = model.preprocess_inputs(input_data)
|
89 |
+
images, bbox, gt_alpha, trimap, condition = inputs['images'], inputs['bbox'], inputs['alpha'], inputs['trimap'], inputs['condition']
|
90 |
+
|
91 |
+
if model.backbone_condition:
|
92 |
+
condition_proj = model.condition_embedding(condition)
|
93 |
+
elif model.backbone_bbox_prompt is not None or model.bbox_prompt_all_block is not None:
|
94 |
+
condition_proj = bbox
|
95 |
+
else:
|
96 |
+
condition_proj = None
|
97 |
+
|
98 |
+
low_res_masks, pred_alphas, pred_trimap, sam_hq_matting_token = model.forward_samhq_and_matting_decoder(images, bbox, condition_proj)
|
99 |
+
|
100 |
+
|
101 |
+
output_alpha = np.uint8(pred_alphas[0, 0][:pad_H_W[0], :pad_H_W[1], None].repeat(1, 1, 3).cpu().numpy() * 255)
|
102 |
+
|
103 |
+
return output_alpha
|
104 |
+
|
105 |
+
with gr.Blocks() as demo:
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column(scale=45):
|
109 |
+
img_in = ImagePrompter(type='numpy', show_label=False, label="query image")
|
110 |
+
|
111 |
+
with gr.Column(scale=45):
|
112 |
+
img_out = gr.Image(type='pil', label="output")
|
113 |
+
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column(scale=45):
|
116 |
+
input_model_type = gr.Dropdown(list(model_choice.keys()), value='SAM2', label="Trained SEMat Version")
|
117 |
+
|
118 |
+
with gr.Column(scale=45):
|
119 |
+
bt = gr.Button()
|
120 |
+
|
121 |
+
bt.click(inference_image, inputs=[img_in, input_model_type], outputs=[img_out])
|
122 |
+
|
123 |
+
demo.launch()
|
124 |
+
|
configs/SEMat_HQ-SAM.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .common.train import train
|
2 |
+
from .semantic_enhanced_matting.model import model
|
3 |
+
from .common.optimizer import optimizer
|
4 |
+
from .common.scheduler import lr_multiplier
|
5 |
+
from .semantic_enhanced_matting.dataloader import dataloader
|
6 |
+
from modeling.decoder.unet_detail_capture import MattingDetailDecoder
|
7 |
+
from detectron2.config import LazyCall as L
|
8 |
+
|
9 |
+
model.sam_model.model_type = 'vit_l'
|
10 |
+
model.sam_model.checkpoint = None
|
11 |
+
model.vis_period = 200
|
12 |
+
model.output_dir = '?'
|
13 |
+
|
14 |
+
train.max_iter = 60000
|
15 |
+
train.eval_period = int(train.max_iter * 1 / 10)
|
16 |
+
train.checkpointer.period = int(train.max_iter * 1 / 10)
|
17 |
+
train.checkpointer.max_to_keep = 1
|
18 |
+
|
19 |
+
optimizer.lr = 5e-5
|
20 |
+
|
21 |
+
lr_multiplier.scheduler.values = [1.0, 0.5, 0.2]
|
22 |
+
lr_multiplier.scheduler.milestones = [0.5, 0.75]
|
23 |
+
lr_multiplier.scheduler.num_updates = train.max_iter
|
24 |
+
lr_multiplier.warmup_length = 250 / train.max_iter
|
25 |
+
|
26 |
+
train.output_dir = './work_dirs/SEMat_HQ-SAM'
|
27 |
+
|
28 |
+
model.lora_rank = 16
|
29 |
+
model.lora_alpha = 16
|
30 |
+
model.matting_decoder = L(MattingDetailDecoder)(
|
31 |
+
vit_intern_feat_in = 1024,
|
32 |
+
vit_intern_feat_index = [0, 1, 2, 3],
|
33 |
+
norm_type = 'SyncBN',
|
34 |
+
block_num = 2,
|
35 |
+
img_feat_in = 6,
|
36 |
+
norm_mask_logits = 6.5
|
37 |
+
)
|
38 |
+
model.backbone_bbox_prompt = 'bbox'
|
39 |
+
model.backbone_bbox_prompt_loc = [2, 3]
|
40 |
+
model.backbone_bbox_prompt_loss_weight = 1.0
|
41 |
+
model.matting_token = True
|
42 |
+
model.sam_model.matting_token = 3
|
43 |
+
model.sam_model.frozen_decoder = True
|
44 |
+
model.sam_hq_token_reg = 0.2
|
45 |
+
model.reg_w_bce_loss = True
|
46 |
+
model.matting_token_sup = 'trimap'
|
47 |
+
model.matting_token_sup_loss_weight = 0.05
|
48 |
+
model.trimap_loss_type = 'NGHM'
|
configs/SEMat_SAM.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .common.train import train
|
2 |
+
from .semantic_enhanced_matting.model import model
|
3 |
+
from .common.optimizer import optimizer
|
4 |
+
from .common.scheduler import lr_multiplier
|
5 |
+
from .semantic_enhanced_matting.dataloader import dataloader
|
6 |
+
from modeling.decoder.unet_detail_capture import MattingDetailDecoder
|
7 |
+
from detectron2.config import LazyCall as L
|
8 |
+
|
9 |
+
model.sam_model.model_type = 'vit_l'
|
10 |
+
model.sam_model.checkpoint = None
|
11 |
+
model.vis_period = 200
|
12 |
+
model.output_dir = '?'
|
13 |
+
|
14 |
+
train.max_iter = 60000
|
15 |
+
train.eval_period = int(train.max_iter * 1 / 10)
|
16 |
+
train.checkpointer.period = int(train.max_iter * 1 / 10)
|
17 |
+
train.checkpointer.max_to_keep = 1
|
18 |
+
|
19 |
+
optimizer.lr = 5e-5
|
20 |
+
|
21 |
+
lr_multiplier.scheduler.values = [1.0, 0.5, 0.2]
|
22 |
+
lr_multiplier.scheduler.milestones = [0.5, 0.75]
|
23 |
+
lr_multiplier.scheduler.num_updates = train.max_iter
|
24 |
+
lr_multiplier.warmup_length = 250 / train.max_iter
|
25 |
+
|
26 |
+
train.output_dir = './work_dirs/SEMat_SAM'
|
27 |
+
|
28 |
+
model.lora_rank = 16
|
29 |
+
model.lora_alpha = 16
|
30 |
+
model.matting_decoder = L(MattingDetailDecoder)(
|
31 |
+
vit_intern_feat_in = 1024,
|
32 |
+
vit_intern_feat_index = [0, 1, 2, 3],
|
33 |
+
norm_type = 'SyncBN',
|
34 |
+
block_num = 2,
|
35 |
+
img_feat_in = 6,
|
36 |
+
norm_mask_logits = 6.5
|
37 |
+
)
|
38 |
+
model.backbone_bbox_prompt = 'bbox'
|
39 |
+
model.backbone_bbox_prompt_loc = [2, 3]
|
40 |
+
model.backbone_bbox_prompt_loss_weight = 1.0
|
41 |
+
model.matting_token = True
|
42 |
+
model.sam_model.matting_token = 3
|
43 |
+
model.sam_model.frozen_decoder = True
|
44 |
+
model.sam_hq_token_reg = 0.2
|
45 |
+
model.reg_on_sam_logits = True
|
46 |
+
model.reg_w_bce_loss = True
|
47 |
+
model.matting_token_sup = 'trimap'
|
48 |
+
model.matting_token_sup_loss_weight = 0.05
|
49 |
+
model.trimap_loss_type = 'NGHM'
|
50 |
+
model.sam_model.wo_hq = True
|
51 |
+
model.sam_model.mask_matting_res_add = False
|
configs/SEMat_SAM2.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .common.train import train
|
2 |
+
from .semantic_enhanced_matting.model import model
|
3 |
+
from .common.optimizer import optimizer
|
4 |
+
from .common.scheduler import lr_multiplier
|
5 |
+
from .semantic_enhanced_matting.dataloader import dataloader
|
6 |
+
from modeling.decoder.unet_detail_capture import MattingDetailDecoder
|
7 |
+
from detectron2.config import LazyCall as L
|
8 |
+
from sam2.build_sam import build_sam2
|
9 |
+
|
10 |
+
model.sam_model.model_type = 'vit_l'
|
11 |
+
model.sam_model.checkpoint = None
|
12 |
+
model.vis_period = 200
|
13 |
+
model.output_dir = '?'
|
14 |
+
|
15 |
+
train.max_iter = 60000
|
16 |
+
train.eval_period = int(train.max_iter * 1 / 10)
|
17 |
+
train.checkpointer.period = int(train.max_iter * 1 / 10)
|
18 |
+
train.checkpointer.max_to_keep = 1
|
19 |
+
|
20 |
+
optimizer.lr = 5e-5
|
21 |
+
|
22 |
+
lr_multiplier.scheduler.values = [1.0, 0.5, 0.2]
|
23 |
+
lr_multiplier.scheduler.milestones = [0.5, 0.75]
|
24 |
+
lr_multiplier.scheduler.num_updates = train.max_iter
|
25 |
+
lr_multiplier.warmup_length = 250 / train.max_iter
|
26 |
+
|
27 |
+
train.output_dir = './work_dirs/SEMat_SAM2'
|
28 |
+
|
29 |
+
model.sam2 = True
|
30 |
+
model.sam_model = L(build_sam2)(
|
31 |
+
config_file = 'sam2_hiera_l.yaml',
|
32 |
+
ckpt_path = None,
|
33 |
+
device = "cuda",
|
34 |
+
bbox_mask_matting_token = True,
|
35 |
+
mode="train",
|
36 |
+
upscaled_embedding_res_add = False
|
37 |
+
)
|
38 |
+
model.lora_rank = 16
|
39 |
+
model.lora_alpha = 16
|
40 |
+
model.matting_decoder = L(MattingDetailDecoder)(
|
41 |
+
vit_intern_feat_in = 1024,
|
42 |
+
vit_intern_feat_index = [0, 1, 2, 3],
|
43 |
+
norm_type = 'SyncBN',
|
44 |
+
block_num = 2,
|
45 |
+
img_feat_in = 6,
|
46 |
+
norm_mask_logits = 6.5,
|
47 |
+
sam2_multi_scale_feates = True
|
48 |
+
)
|
49 |
+
model.backbone_bbox_prompt = 'bbox'
|
50 |
+
model.backbone_bbox_prompt_loc = [2, 3]
|
51 |
+
model.backbone_bbox_prompt_loss_weight = 1.0
|
52 |
+
model.matting_token = True
|
53 |
+
model.sam_hq_token_reg = 0.2
|
54 |
+
model.reg_w_bce_loss = True
|
55 |
+
model.matting_token_sup = 'trimap'
|
56 |
+
model.matting_token_sup_loss_weight = 0.05
|
57 |
+
model.trimap_loss_type = 'NGHM'
|
configs/common/optimizer.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from detectron2 import model_zoo
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
def get_vit_lr_decay_rate(name, lr_decay_rate=1.0, num_layers=12):
|
5 |
+
"""
|
6 |
+
Calculate lr decay rate for different ViT blocks.
|
7 |
+
Args:
|
8 |
+
name (string): parameter name.
|
9 |
+
lr_decay_rate (float): base lr decay rate.
|
10 |
+
num_layers (int): number of ViT blocks.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
lr decay rate for the given parameter.
|
14 |
+
"""
|
15 |
+
layer_id = num_layers + 1
|
16 |
+
if name.startswith("backbone"):
|
17 |
+
if ".pos_embed" in name or ".patch_embed" in name:
|
18 |
+
layer_id = 0
|
19 |
+
elif ".blocks." in name and ".residual." not in name:
|
20 |
+
layer_id = int(name[name.find(".blocks.") :].split(".")[2]) + 1
|
21 |
+
return lr_decay_rate ** (num_layers + 1 - layer_id)
|
22 |
+
|
23 |
+
# Optimizer
|
24 |
+
optimizer = model_zoo.get_config("common/optim.py").AdamW
|
25 |
+
optimizer.params.lr_factor_func = partial(get_vit_lr_decay_rate, num_layers=12, lr_decay_rate=0.65)
|
26 |
+
optimizer.params.overrides = {"pos_embed": {"weight_decay": 0.0}}
|
configs/common/scheduler.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from detectron2.config import LazyCall as L
|
2 |
+
from detectron2.solver import WarmupParamScheduler
|
3 |
+
from fvcore.common.param_scheduler import MultiStepParamScheduler
|
4 |
+
|
5 |
+
lr_multiplier = L(WarmupParamScheduler)(
|
6 |
+
scheduler=L(MultiStepParamScheduler)(
|
7 |
+
values=[1.0, 0.1, 0.01],
|
8 |
+
milestones=[96778, 103579],
|
9 |
+
num_updates=100,
|
10 |
+
),
|
11 |
+
warmup_length=250 / 100,
|
12 |
+
warmup_factor=0.001,
|
13 |
+
)
|
configs/common/train.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
train = dict(
|
2 |
+
output_dir="./output",
|
3 |
+
init_checkpoint="",
|
4 |
+
max_iter=90000,
|
5 |
+
amp=dict(enabled=False), # options for Automatic Mixed Precision
|
6 |
+
ddp=dict( # options for DistributedDataParallel
|
7 |
+
broadcast_buffers=True,
|
8 |
+
find_unused_parameters=False,
|
9 |
+
fp16_compression=True,
|
10 |
+
),
|
11 |
+
checkpointer=dict(period=5000, max_to_keep=100), # options for PeriodicCheckpointer
|
12 |
+
eval_period=5000,
|
13 |
+
log_period=20,
|
14 |
+
device="cuda",
|
15 |
+
seed=42
|
16 |
+
# ...
|
17 |
+
)
|
configs/semantic_enhanced_matting/dataloader.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from omegaconf import OmegaConf
|
2 |
+
from torch.utils.data import ConcatDataset
|
3 |
+
from detectron2.config import LazyCall as L
|
4 |
+
|
5 |
+
from data.dim_dataset import build_d2_test_dataloader, AdobeCompositionEvaluator, adobe_composition_collate_fn, RW100Test, AIM500Test, AM2KTest, P3M500Test, RWP636Test, SIMTest
|
6 |
+
|
7 |
+
AIM500_PATH = '/path/to/datasets/AIM-500'
|
8 |
+
RW100_PATH = '/path/to/datasets/RefMatte_RW_100'
|
9 |
+
AM2K_PATH = '/path/to/datasets/AM-2K'
|
10 |
+
P3M500_PATH = '/path/to/datasets/P3M-10k/validation/P3M-500-NP'
|
11 |
+
RWP636_PATH = '/path/to/datasets/RealWorldPortrait-636'
|
12 |
+
SIM_PATH = '/path/to/datasets/SIMD/generated_testset'
|
13 |
+
|
14 |
+
dataloader = OmegaConf.create()
|
15 |
+
test_dataset = L(ConcatDataset)(
|
16 |
+
datasets = [
|
17 |
+
L(AIM500Test)(
|
18 |
+
data_dir = AIM500_PATH,
|
19 |
+
target_size = 1024,
|
20 |
+
multi_fg = True,
|
21 |
+
),
|
22 |
+
L(RW100Test)(
|
23 |
+
data_dir = RW100_PATH,
|
24 |
+
target_size = 1024,
|
25 |
+
multi_fg = True,
|
26 |
+
),
|
27 |
+
L(AM2KTest)(
|
28 |
+
data_dir = AM2K_PATH,
|
29 |
+
target_size = 1024,
|
30 |
+
multi_fg = True,
|
31 |
+
),
|
32 |
+
L(P3M500Test)(
|
33 |
+
data_dir = P3M500_PATH,
|
34 |
+
target_size = 1024,
|
35 |
+
multi_fg = True,
|
36 |
+
),
|
37 |
+
L(RWP636Test)(
|
38 |
+
data_dir = RWP636_PATH,
|
39 |
+
target_size = 1024,
|
40 |
+
multi_fg = True
|
41 |
+
),
|
42 |
+
L(SIMTest)(
|
43 |
+
data_dir = SIM_PATH,
|
44 |
+
target_size = 1024,
|
45 |
+
multi_fg = True
|
46 |
+
)
|
47 |
+
]
|
48 |
+
)
|
49 |
+
|
50 |
+
dataloader.test = L(build_d2_test_dataloader)(
|
51 |
+
dataset = test_dataset,
|
52 |
+
local_batch_size = 1,
|
53 |
+
num_workers = 4,
|
54 |
+
collate_fn = adobe_composition_collate_fn
|
55 |
+
)
|
56 |
+
|
57 |
+
dataloader.evaluator = L(AdobeCompositionEvaluator)(
|
58 |
+
save_eval_results_step = 10,
|
59 |
+
output_dir = None, # modify in EvalHook (do_test)
|
60 |
+
eval_dataset_type = ['RW100', 'AIM500', 'AM2K', 'P3M500', 'RWP636', 'SIM'],
|
61 |
+
distributed = True,
|
62 |
+
),
|
configs/semantic_enhanced_matting/model.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from detectron2.config import LazyCall as L
|
2 |
+
|
3 |
+
from modeling import Detail_Capture, MattingCriterion
|
4 |
+
from modeling.meta_arch import SamHqMatte
|
5 |
+
from modeling.semantic_enhanced_matting.build_sam import sam_model_registry_def
|
6 |
+
# from modeling.sam_hq_matting.predictor import SamPredictor
|
7 |
+
from modeling.semantic_enhanced_matting import MaskDecoderMatting
|
8 |
+
|
9 |
+
mask_token_only = False
|
10 |
+
|
11 |
+
model = L(SamHqMatte)(
|
12 |
+
|
13 |
+
# original sam_hq
|
14 |
+
sam_model = L(sam_model_registry_def)(
|
15 |
+
model_type = 'vit_b',
|
16 |
+
checkpoint = None,
|
17 |
+
),
|
18 |
+
hq_token_only = True,
|
19 |
+
hq_features_type = 'Final',
|
20 |
+
multimask_output = True,
|
21 |
+
|
22 |
+
# loss function
|
23 |
+
criterion=L(MattingCriterion)(
|
24 |
+
losses = ['unknown_l1_loss', 'known_l1_loss', 'loss_pha_laplacian', 'loss_gradient_penalty']
|
25 |
+
),
|
26 |
+
|
27 |
+
# other params.
|
28 |
+
pixel_mean = [123.675 / 255., 116.280 / 255., 103.530 / 255.],
|
29 |
+
pixel_std = [58.395 / 255., 57.120 / 255., 57.375 / 255.],
|
30 |
+
|
31 |
+
lora_rank = None,
|
32 |
+
lora_alpha = None,
|
33 |
+
w_dora = False,
|
34 |
+
w_rslora = False,
|
35 |
+
)
|
data/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .dim_dataset import *
|
data/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (173 Bytes). View file
|
|
data/__pycache__/dim_dataset.cpython-38.pyc
ADDED
Binary file (42.1 kB). View file
|
|
data/__pycache__/evaluate.cpython-38.pyc
ADDED
Binary file (3.17 kB). View file
|
|
data/__pycache__/rand_augment.cpython-38.pyc
ADDED
Binary file (4.75 kB). View file
|
|
data/coconut_dataset.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
from torch.utils.data import Dataset, DistributedSampler, Sampler
|
8 |
+
from torchvision import transforms
|
9 |
+
from detectron2.utils.logger import setup_logger
|
10 |
+
from typing import Optional
|
11 |
+
from operator import itemgetter
|
12 |
+
from collections import defaultdict
|
13 |
+
|
14 |
+
from data.dim_dataset import GenBBox
|
15 |
+
|
16 |
+
|
17 |
+
def random_interp():
|
18 |
+
return np.random.choice([cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4])
|
19 |
+
|
20 |
+
|
21 |
+
class SplitConcatImage(object):
|
22 |
+
|
23 |
+
def __init__(self, concat_num=4, wo_mask_to_mattes=False):
|
24 |
+
self.concat_num = concat_num
|
25 |
+
self.wo_mask_to_mattes = wo_mask_to_mattes
|
26 |
+
if self.wo_mask_to_mattes:
|
27 |
+
assert self.concat_num == 5
|
28 |
+
|
29 |
+
def __call__(self, concat_image):
|
30 |
+
if isinstance(concat_image, list):
|
31 |
+
concat_image, image_path = concat_image[0], concat_image[1]
|
32 |
+
else:
|
33 |
+
image_path = None
|
34 |
+
H, W, _ = concat_image.shape
|
35 |
+
|
36 |
+
concat_num = self.concat_num
|
37 |
+
if image_path is not None:
|
38 |
+
if '06-14' in image_path:
|
39 |
+
concat_num = 4
|
40 |
+
elif 'ori_mask' in image_path or 'SEMat' in image_path:
|
41 |
+
concat_num = 3
|
42 |
+
else:
|
43 |
+
concat_num = 5
|
44 |
+
|
45 |
+
assert W % concat_num == 0
|
46 |
+
W = W // concat_num
|
47 |
+
|
48 |
+
image = concat_image[:H, :W]
|
49 |
+
if self.concat_num != 3:
|
50 |
+
trimap = concat_image[:H, (concat_num - 2) * W: (concat_num - 1) * W]
|
51 |
+
if self.wo_mask_to_mattes:
|
52 |
+
alpha = concat_image[:H, 2 * W: 3 * W]
|
53 |
+
else:
|
54 |
+
alpha = concat_image[:H, (concat_num - 1) * W: concat_num * W]
|
55 |
+
else:
|
56 |
+
trimap = concat_image[:H, (concat_num - 1) * W: concat_num * W]
|
57 |
+
alpha = concat_image[:H, (concat_num - 2) * W: (concat_num - 1) * W]
|
58 |
+
|
59 |
+
return {'image': image, 'trimap': trimap, 'alpha': alpha}
|
60 |
+
|
61 |
+
|
62 |
+
class RandomHorizontalFlip(object):
|
63 |
+
|
64 |
+
def __init__(self, prob=0.5):
|
65 |
+
self.prob = prob
|
66 |
+
|
67 |
+
def __call__(self, sample):
|
68 |
+
if np.random.uniform(0, 1) < self.prob:
|
69 |
+
for key in sample.keys():
|
70 |
+
sample[key] = cv2.flip(sample[key], 1)
|
71 |
+
return sample
|
72 |
+
|
73 |
+
class EmptyAug(object):
|
74 |
+
def __call__(self, sample):
|
75 |
+
return sample
|
76 |
+
|
77 |
+
class RandomReszieCrop(object):
|
78 |
+
|
79 |
+
def __init__(self, output_size=1024, aug_scale_min=0.5, aug_scale_max=1.5):
|
80 |
+
self.desired_size = output_size
|
81 |
+
self.aug_scale_min = aug_scale_min
|
82 |
+
self.aug_scale_max = aug_scale_max
|
83 |
+
|
84 |
+
def __call__(self, sample):
|
85 |
+
H, W, _ = sample['image'].shape
|
86 |
+
|
87 |
+
if self.aug_scale_min == 1.0 and self.aug_scale_max == 1.0:
|
88 |
+
crop_H, crop_W = H, W
|
89 |
+
crop_y1, crop_y2 = 0, crop_H
|
90 |
+
crop_x1, crop_x2 = 0, crop_W
|
91 |
+
scale_W, scaled_H = W, H
|
92 |
+
elif self.aug_scale_min == -1.0 and self.aug_scale_max == -1.0:
|
93 |
+
scale = min(self.desired_size / H, self.desired_size / W)
|
94 |
+
scaled_H, scale_W = round(H * scale), round(W * scale)
|
95 |
+
crop_H, crop_W = scaled_H, scale_W
|
96 |
+
crop_y1, crop_y2 = 0, crop_H
|
97 |
+
crop_x1, crop_x2 = 0, crop_W
|
98 |
+
else:
|
99 |
+
# random size
|
100 |
+
random_scale = np.random.uniform(0, 1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min # random_val: 0.5 ~ 1.5
|
101 |
+
scaled_size = round(random_scale * self.desired_size)
|
102 |
+
|
103 |
+
scale = min(scaled_size / H, scaled_size / W)
|
104 |
+
scaled_H, scale_W = round(H * scale), round(W * scale)
|
105 |
+
|
106 |
+
# random crop
|
107 |
+
crop_H, crop_W = min(self.desired_size, scaled_H), min(self.desired_size, scale_W) # crop_size
|
108 |
+
margin_H, margin_W = max(scaled_H - crop_H, 0), max(scale_W - crop_W, 0)
|
109 |
+
offset_H, offset_W = np.random.randint(0, margin_H + 1), np.random.randint(0, margin_W + 1)
|
110 |
+
crop_y1, crop_y2 = offset_H, offset_H + crop_H
|
111 |
+
crop_x1, crop_x2 = offset_W, offset_W + crop_W
|
112 |
+
|
113 |
+
for key in sample.keys():
|
114 |
+
sample[key] = cv2.resize(sample[key], (scale_W, scaled_H), interpolation=random_interp())[crop_y1: crop_y2, crop_x1: crop_x2, :] # resize and crop
|
115 |
+
padding = np.zeros(shape=(self.desired_size, self.desired_size, 3), dtype=sample[key].dtype) # pad to desired_size
|
116 |
+
padding[: crop_H, : crop_W, :] = sample[key]
|
117 |
+
sample[key] = padding
|
118 |
+
|
119 |
+
return sample
|
120 |
+
|
121 |
+
|
122 |
+
class RandomJitter(object):
|
123 |
+
"""
|
124 |
+
Random change the hue of the image
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __call__(self, sample):
|
128 |
+
|
129 |
+
image = sample['image']
|
130 |
+
|
131 |
+
# convert to HSV space, convert to float32 image to keep precision during space conversion.
|
132 |
+
image = cv2.cvtColor(image.astype(np.float32)/255.0, cv2.COLOR_BGR2HSV)
|
133 |
+
# Hue noise
|
134 |
+
hue_jitter = np.random.randint(-40, 40)
|
135 |
+
image[:, :, 0] = np.remainder(image[:, :, 0].astype(np.float32) + hue_jitter, 360)
|
136 |
+
# Saturation noise
|
137 |
+
sat_bar = image[:, :, 1].mean()
|
138 |
+
|
139 |
+
sat_jitter = np.random.rand()*(1.1 - sat_bar)/5 - (1.1 - sat_bar) / 10
|
140 |
+
sat = image[:, :, 1]
|
141 |
+
sat = np.abs(sat + sat_jitter)
|
142 |
+
sat[sat>1] = 2 - sat[sat>1]
|
143 |
+
image[:, :, 1] = sat
|
144 |
+
# Value noise
|
145 |
+
val_bar = image[:, :, 2].mean()
|
146 |
+
|
147 |
+
val_jitter = np.random.rand()*(1.1 - val_bar)/5-(1.1 - val_bar) / 10
|
148 |
+
val = image[:, :, 2]
|
149 |
+
val = np.abs(val + val_jitter)
|
150 |
+
val[val>1] = 2 - val[val>1]
|
151 |
+
image[:, :, 2] = val
|
152 |
+
# convert back to BGR space
|
153 |
+
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
|
154 |
+
sample['image'] = image * 255
|
155 |
+
|
156 |
+
return sample
|
157 |
+
|
158 |
+
|
159 |
+
class ToTensor(object):
|
160 |
+
|
161 |
+
def __call__(self, sample):
|
162 |
+
image, alpha, trimap = sample['image'][:, :, ::-1], sample['alpha'], sample['trimap']
|
163 |
+
|
164 |
+
# image
|
165 |
+
image = image.transpose((2, 0, 1)) / 255.
|
166 |
+
sample['image'] = torch.from_numpy(image).float()
|
167 |
+
|
168 |
+
# alpha
|
169 |
+
alpha = alpha.transpose((2, 0, 1))[0: 1] / 255.
|
170 |
+
alpha[alpha < 0 ] = 0
|
171 |
+
alpha[alpha > 1] = 1
|
172 |
+
sample['alpha'] = torch.from_numpy(alpha).float()
|
173 |
+
|
174 |
+
# trimap
|
175 |
+
trimap = trimap.transpose((2, 0, 1))[0: 1] / 1.
|
176 |
+
sample['trimap'] = torch.from_numpy(trimap).float()
|
177 |
+
sample['trimap'][sample['trimap'] < 85] = 0
|
178 |
+
sample['trimap'][sample['trimap'] >= 170] = 1
|
179 |
+
sample['trimap'][sample['trimap'] >= 85] = 0.5
|
180 |
+
|
181 |
+
return sample
|
182 |
+
|
183 |
+
|
184 |
+
class COCONutData(Dataset):
|
185 |
+
def __init__(
|
186 |
+
self,
|
187 |
+
json_path,
|
188 |
+
data_root_path,
|
189 |
+
output_size = 512,
|
190 |
+
aug_scale_min = 0.5,
|
191 |
+
aug_scale_max = 1.5,
|
192 |
+
with_bbox = False,
|
193 |
+
bbox_offset_factor = None,
|
194 |
+
phase = "train",
|
195 |
+
min_miou = 95,
|
196 |
+
miou_json = '',
|
197 |
+
remove_coco_transparent = False,
|
198 |
+
coconut_num_ratio = None,
|
199 |
+
return_multi_fg_info = False,
|
200 |
+
wo_accessory_fusion = False,
|
201 |
+
wo_mask_to_mattes = False,
|
202 |
+
return_image_name = False,
|
203 |
+
):
|
204 |
+
|
205 |
+
self.data_root_path = data_root_path
|
206 |
+
self.output_size = output_size
|
207 |
+
self.aug_scale_min = aug_scale_min
|
208 |
+
self.aug_scale_max = aug_scale_max
|
209 |
+
self.with_bbox = with_bbox
|
210 |
+
self.bbox_offset_factor = bbox_offset_factor
|
211 |
+
self.phase = phase
|
212 |
+
self.min_miou = min_miou
|
213 |
+
self.miou_json = miou_json
|
214 |
+
self.remove_coco_transparent = remove_coco_transparent
|
215 |
+
self.coconut_num_ratio = coconut_num_ratio
|
216 |
+
self.return_multi_fg_info = return_multi_fg_info
|
217 |
+
self.wo_accessory_fusion = wo_accessory_fusion # TODO
|
218 |
+
self.wo_mask_to_mattes = wo_mask_to_mattes
|
219 |
+
self.return_image_name = return_image_name
|
220 |
+
assert self.wo_accessory_fusion + self.wo_mask_to_mattes <= 1
|
221 |
+
assert self.phase == 'train'
|
222 |
+
|
223 |
+
self.data_path = []
|
224 |
+
with open(json_path, "r") as file:
|
225 |
+
coconut_matting_info = json.load(file)
|
226 |
+
|
227 |
+
if self.miou_json != '':
|
228 |
+
name_2_miou_dict = defaultdict(int)
|
229 |
+
with open(self.miou_json, "r") as file:
|
230 |
+
coconut_matting_miou = json.load(file)
|
231 |
+
for miou, name in coconut_matting_miou:
|
232 |
+
name_2_miou_dict[name] = miou
|
233 |
+
for i in coconut_matting_info:
|
234 |
+
if 'accessory' in i['save_path']:
|
235 |
+
self.data_path.append(i['save_path'])
|
236 |
+
elif name_2_miou_dict[i['save_path'].split('/')[-1]] >= self.min_miou:
|
237 |
+
if not (self.remove_coco_transparent and 'glass' in i['save_path']):
|
238 |
+
self.data_path.append(i['save_path'])
|
239 |
+
else:
|
240 |
+
for i in coconut_matting_info:
|
241 |
+
self.data_path.append(i['save_path'])
|
242 |
+
|
243 |
+
if 'accessory' in json_path:
|
244 |
+
concat_num = 5
|
245 |
+
elif 'ori_mask' in json_path:
|
246 |
+
concat_num = 3
|
247 |
+
else:
|
248 |
+
concat_num = 4
|
249 |
+
|
250 |
+
train_trans = [
|
251 |
+
SplitConcatImage(concat_num, wo_mask_to_mattes = self.wo_mask_to_mattes),
|
252 |
+
RandomHorizontalFlip(prob=0 if hasattr(self, 'return_image_name') and self.return_image_name else 0.5),
|
253 |
+
RandomReszieCrop(self.output_size, self.aug_scale_min, self.aug_scale_max),
|
254 |
+
EmptyAug() if hasattr(self, 'return_image_name') and self.return_image_name else RandomJitter(),
|
255 |
+
ToTensor(),
|
256 |
+
GenBBox(bbox_offset_factor=self.bbox_offset_factor)
|
257 |
+
]
|
258 |
+
self.transform = transforms.Compose(train_trans)
|
259 |
+
print('coconut num: ', len(self.data_path) * self.coconut_num_ratio if self.coconut_num_ratio is not None else len(self.data_path))
|
260 |
+
|
261 |
+
def __getitem__(self, idx):
|
262 |
+
if self.coconut_num_ratio is not None:
|
263 |
+
if self.coconut_num_ratio < 1.0 or idx >= len(self.data_path):
|
264 |
+
idx = np.random.randint(0, len(self.data_path))
|
265 |
+
concat_image = cv2.imread(os.path.join(self.data_root_path, self.data_path[idx]))
|
266 |
+
sample = self.transform([concat_image, self.data_path[idx]])
|
267 |
+
sample['dataset_name'] = 'COCONut'
|
268 |
+
if self.return_multi_fg_info:
|
269 |
+
sample['multi_fg'] = False
|
270 |
+
if hasattr(self, 'return_image_name') and self.return_image_name:
|
271 |
+
sample['image_name'] = self.data_path[idx]
|
272 |
+
return sample
|
273 |
+
|
274 |
+
def __len__(self):
|
275 |
+
if self.coconut_num_ratio is not None:
|
276 |
+
return int(len(self.data_path) * self.coconut_num_ratio)
|
277 |
+
else:
|
278 |
+
return len(self.data_path)
|
279 |
+
|
280 |
+
|
281 |
+
class DatasetFromSampler(Dataset):
|
282 |
+
"""Dataset to create indexes from `Sampler`.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
sampler: PyTorch sampler
|
286 |
+
"""
|
287 |
+
|
288 |
+
def __init__(self, sampler: Sampler):
|
289 |
+
"""Initialisation for DatasetFromSampler."""
|
290 |
+
self.sampler = sampler
|
291 |
+
self.sampler_list = None
|
292 |
+
|
293 |
+
def __getitem__(self, index: int):
|
294 |
+
"""Gets element of the dataset.
|
295 |
+
|
296 |
+
Args:
|
297 |
+
index: index of the element in the dataset
|
298 |
+
|
299 |
+
Returns:
|
300 |
+
Single element by index
|
301 |
+
"""
|
302 |
+
if self.sampler_list is None:
|
303 |
+
self.sampler_list = list(self.sampler)
|
304 |
+
return self.sampler_list[index]
|
305 |
+
|
306 |
+
def __len__(self) -> int:
|
307 |
+
"""
|
308 |
+
Returns:
|
309 |
+
int: length of the dataset
|
310 |
+
"""
|
311 |
+
return len(self.sampler)
|
312 |
+
|
313 |
+
|
314 |
+
class DistributedSamplerWrapper(DistributedSampler):
|
315 |
+
"""
|
316 |
+
Wrapper over `Sampler` for distributed training.
|
317 |
+
Allows you to use any sampler in distributed mode.
|
318 |
+
It is especially useful in conjunction with
|
319 |
+
`torch.nn.parallel.DistributedDataParallel`. In such case, each
|
320 |
+
process can pass a DistributedSamplerWrapper instance as a DataLoader
|
321 |
+
sampler, and load a subset of subsampled data of the original dataset
|
322 |
+
that is exclusive to it.
|
323 |
+
.. note::
|
324 |
+
Sampler is assumed to be of constant size.
|
325 |
+
"""
|
326 |
+
|
327 |
+
def __init__(
|
328 |
+
self,
|
329 |
+
sampler,
|
330 |
+
num_replicas: Optional[int] = None,
|
331 |
+
rank: Optional[int] = None,
|
332 |
+
shuffle: bool = True,
|
333 |
+
):
|
334 |
+
"""
|
335 |
+
Args:
|
336 |
+
sampler: Sampler used for subsampling
|
337 |
+
num_replicas (int, optional): Number of processes participating in
|
338 |
+
distributed training
|
339 |
+
rank (int, optional): Rank of the current process
|
340 |
+
within ``num_replicas``
|
341 |
+
shuffle (bool, optional): If true (default),
|
342 |
+
sampler will shuffle the indices
|
343 |
+
"""
|
344 |
+
super(DistributedSamplerWrapper, self).__init__(
|
345 |
+
DatasetFromSampler(sampler),
|
346 |
+
num_replicas=num_replicas,
|
347 |
+
rank=rank,
|
348 |
+
shuffle=shuffle,
|
349 |
+
)
|
350 |
+
self.sampler = sampler
|
351 |
+
|
352 |
+
def __iter__(self):
|
353 |
+
"""@TODO: Docs. Contribution is welcome."""
|
354 |
+
self.dataset = DatasetFromSampler(self.sampler)
|
355 |
+
indexes_of_indexes = super().__iter__()
|
356 |
+
subsampler_indexes = self.dataset
|
357 |
+
return iter(itemgetter(*indexes_of_indexes)(subsampler_indexes))
|
358 |
+
|
359 |
+
|
360 |
+
if __name__ == '__main__':
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
dataset = COCONutData(
|
365 |
+
json_path = '/root/data/my_path/Matting/DiffMatte-main/24-06-14_coco-nut_matting.json',
|
366 |
+
data_root_path = '/root/data/my_path/Matting/DiffMatte-main',
|
367 |
+
output_size = 1024,
|
368 |
+
aug_scale_min = 0.5,
|
369 |
+
aug_scale_max = 1.5,
|
370 |
+
with_bbox = True,
|
371 |
+
bbox_offset_factor = 0.1,
|
372 |
+
phase = "train"
|
373 |
+
)
|
374 |
+
data = dataset[0]
|
375 |
+
|
376 |
+
for key, val in data.items():
|
377 |
+
print(key, val.shape, torch.min(val), torch.max(val))
|
data/dim_dataset.py
ADDED
@@ -0,0 +1,1476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Dataloader to process Adobe Image Matting Dataset.
|
3 |
+
|
4 |
+
From GCA_Matting(https://github.com/Yaoyi-Li/GCA-Matting/tree/master/dataloader)
|
5 |
+
'''
|
6 |
+
import os
|
7 |
+
import glob
|
8 |
+
import logging
|
9 |
+
import os.path as osp
|
10 |
+
import functools
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import cv2
|
14 |
+
import math
|
15 |
+
import numbers
|
16 |
+
import random
|
17 |
+
import pickle
|
18 |
+
from torch.utils.data import Dataset, DataLoader
|
19 |
+
from torch.nn import functional as F
|
20 |
+
from torchvision import transforms
|
21 |
+
from easydict import EasyDict
|
22 |
+
from detectron2.utils.logger import setup_logger
|
23 |
+
from detectron2.utils import comm
|
24 |
+
from detectron2.data import build_detection_test_loader
|
25 |
+
import torchvision.transforms.functional
|
26 |
+
|
27 |
+
import json
|
28 |
+
from PIL import Image
|
29 |
+
from detectron2.evaluation.evaluator import DatasetEvaluator
|
30 |
+
from collections import defaultdict
|
31 |
+
|
32 |
+
from data.evaluate import compute_sad_loss, compute_mse_loss, compute_mad_loss, compute_gradient_loss, compute_connectivity_error
|
33 |
+
|
34 |
+
# Base default config
|
35 |
+
CONFIG = EasyDict({})
|
36 |
+
|
37 |
+
# Model config
|
38 |
+
CONFIG.model = EasyDict({})
|
39 |
+
# one-hot or class, choice: [3, 1]
|
40 |
+
CONFIG.model.trimap_channel = 1
|
41 |
+
|
42 |
+
# Dataloader config
|
43 |
+
CONFIG.data = EasyDict({})
|
44 |
+
# feed forward image size (untested)
|
45 |
+
CONFIG.data.crop_size = 512
|
46 |
+
# composition of two foregrounds, affine transform, crop and HSV jitter
|
47 |
+
CONFIG.data.cutmask_prob = 0.25
|
48 |
+
CONFIG.data.augmentation = True
|
49 |
+
CONFIG.data.random_interp = True
|
50 |
+
|
51 |
+
class Prefetcher():
|
52 |
+
"""
|
53 |
+
Modified from the data_prefetcher in https://github.com/NVIDIA/apex/blob/master/examples/imagenet/main_amp.py
|
54 |
+
"""
|
55 |
+
def __init__(self, loader):
|
56 |
+
self.orig_loader = loader
|
57 |
+
self.stream = torch.cuda.Stream()
|
58 |
+
self.next_sample = None
|
59 |
+
|
60 |
+
def preload(self):
|
61 |
+
try:
|
62 |
+
self.next_sample = next(self.loader)
|
63 |
+
except StopIteration:
|
64 |
+
self.next_sample = None
|
65 |
+
return
|
66 |
+
|
67 |
+
with torch.cuda.stream(self.stream):
|
68 |
+
for key, value in self.next_sample.items():
|
69 |
+
if isinstance(value, torch.Tensor):
|
70 |
+
self.next_sample[key] = value.cuda(non_blocking=True)
|
71 |
+
|
72 |
+
def __next__(self):
|
73 |
+
torch.cuda.current_stream().wait_stream(self.stream)
|
74 |
+
sample = self.next_sample
|
75 |
+
if sample is not None:
|
76 |
+
for key, value in sample.items():
|
77 |
+
if isinstance(value, torch.Tensor):
|
78 |
+
sample[key].record_stream(torch.cuda.current_stream())
|
79 |
+
self.preload()
|
80 |
+
else:
|
81 |
+
# throw stop exception if there is no more data to perform as a default dataloader
|
82 |
+
raise StopIteration("No samples in loader. example: `iterator = iter(Prefetcher(loader)); "
|
83 |
+
"data = next(iterator)`")
|
84 |
+
return sample
|
85 |
+
|
86 |
+
def __iter__(self):
|
87 |
+
self.loader = iter(self.orig_loader)
|
88 |
+
self.preload()
|
89 |
+
return self
|
90 |
+
|
91 |
+
|
92 |
+
class ImageFile(object):
|
93 |
+
def __init__(self, phase='train'):
|
94 |
+
self.phase = phase
|
95 |
+
self.rng = np.random.RandomState(0)
|
96 |
+
|
97 |
+
def _get_valid_names(self, *dirs, shuffle=True):
|
98 |
+
name_sets = [self._get_name_set(d) for d in dirs]
|
99 |
+
|
100 |
+
def _join_and(a, b):
|
101 |
+
return a & b
|
102 |
+
|
103 |
+
valid_names = list(functools.reduce(_join_and, name_sets))
|
104 |
+
if shuffle:
|
105 |
+
self.rng.shuffle(valid_names)
|
106 |
+
|
107 |
+
return valid_names
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def _get_name_set(dir_name):
|
111 |
+
path_list = glob.glob(os.path.join(dir_name, '*'))
|
112 |
+
name_set = set()
|
113 |
+
for path in path_list:
|
114 |
+
name = os.path.basename(path)
|
115 |
+
name = os.path.splitext(name)[0]
|
116 |
+
name_set.add(name)
|
117 |
+
return name_set
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
def _list_abspath(data_dir, ext, data_list):
|
121 |
+
return [os.path.join(data_dir, name + ext)
|
122 |
+
for name in data_list]
|
123 |
+
|
124 |
+
class ImageFileTrain(ImageFile):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
alpha_dir="train_alpha",
|
128 |
+
fg_dir="train_fg",
|
129 |
+
bg_dir="train_bg",
|
130 |
+
alpha_ext=".jpg",
|
131 |
+
fg_ext=".jpg",
|
132 |
+
bg_ext=".jpg",
|
133 |
+
fg_have_bg_num=None,
|
134 |
+
alpha_ratio_json = None,
|
135 |
+
alpha_min_ratio = None,
|
136 |
+
key_sample_ratio = None,
|
137 |
+
):
|
138 |
+
super(ImageFileTrain, self).__init__(phase="train")
|
139 |
+
|
140 |
+
self.alpha_dir = alpha_dir
|
141 |
+
self.fg_dir = fg_dir
|
142 |
+
self.bg_dir = bg_dir
|
143 |
+
self.alpha_ext = alpha_ext
|
144 |
+
self.fg_ext = fg_ext
|
145 |
+
self.bg_ext = bg_ext
|
146 |
+
logger = setup_logger(name=__name__)
|
147 |
+
|
148 |
+
if not isinstance(self.alpha_dir, str):
|
149 |
+
assert len(self.alpha_dir) == len(self.fg_dir) == len(alpha_ext) == len(fg_ext)
|
150 |
+
self.valid_fg_list = []
|
151 |
+
self.alpha = []
|
152 |
+
self.fg = []
|
153 |
+
self.key_alpha = []
|
154 |
+
self.key_fg = []
|
155 |
+
for i in range(len(self.alpha_dir)):
|
156 |
+
valid_fg_list = self._get_valid_names(self.fg_dir[i], self.alpha_dir[i])
|
157 |
+
valid_fg_list.sort()
|
158 |
+
alpha = self._list_abspath(self.alpha_dir[i], self.alpha_ext[i], valid_fg_list)
|
159 |
+
fg = self._list_abspath(self.fg_dir[i], self.fg_ext[i], valid_fg_list)
|
160 |
+
self.valid_fg_list += valid_fg_list
|
161 |
+
|
162 |
+
self.alpha += alpha * fg_have_bg_num[i]
|
163 |
+
self.fg += fg * fg_have_bg_num[i]
|
164 |
+
|
165 |
+
if alpha_ratio_json[i] is not None:
|
166 |
+
tmp_key_alpha = []
|
167 |
+
tmp_key_fg = []
|
168 |
+
name_to_alpha_path = dict()
|
169 |
+
for name in alpha:
|
170 |
+
name_to_alpha_path[name.split('/')[-1].split('.')[0]] = name
|
171 |
+
name_to_fg_path = dict()
|
172 |
+
for name in fg:
|
173 |
+
name_to_fg_path[name.split('/')[-1].split('.')[0]] = name
|
174 |
+
|
175 |
+
with open(alpha_ratio_json[i], 'r') as file:
|
176 |
+
alpha_ratio_list = json.load(file)
|
177 |
+
for ratio, name in alpha_ratio_list:
|
178 |
+
if ratio < alpha_min_ratio[i]:
|
179 |
+
break
|
180 |
+
tmp_key_alpha.append(name_to_alpha_path[name.split('.')[0]])
|
181 |
+
tmp_key_fg.append(name_to_fg_path[name.split('.')[0]])
|
182 |
+
|
183 |
+
self.key_alpha.extend(tmp_key_alpha * fg_have_bg_num[i])
|
184 |
+
self.key_fg.extend(tmp_key_fg * fg_have_bg_num[i])
|
185 |
+
|
186 |
+
if len(self.key_alpha) != 0 and key_sample_ratio > 0:
|
187 |
+
repeat_num = key_sample_ratio * (len(self.alpha) - len(self.key_alpha)) / len(self.key_alpha) / (1 - key_sample_ratio) - 1
|
188 |
+
print('key sample num:', len(self.key_alpha), ', repeat num: ', repeat_num)
|
189 |
+
for i in range(math.ceil(repeat_num)):
|
190 |
+
self.alpha += self.key_alpha
|
191 |
+
self.fg += self.key_fg
|
192 |
+
|
193 |
+
else:
|
194 |
+
self.valid_fg_list = self._get_valid_names(self.fg_dir, self.alpha_dir)
|
195 |
+
self.valid_fg_list.sort()
|
196 |
+
self.alpha = self._list_abspath(self.alpha_dir, self.alpha_ext, self.valid_fg_list)
|
197 |
+
self.fg = self._list_abspath(self.fg_dir, self.fg_ext, self.valid_fg_list)
|
198 |
+
|
199 |
+
self.valid_bg_list = [os.path.splitext(name)[0] for name in os.listdir(self.bg_dir)]
|
200 |
+
self.valid_bg_list.sort()
|
201 |
+
|
202 |
+
if fg_have_bg_num is not None:
|
203 |
+
# assert fg_have_bg_num * len(self.valid_fg_list) <= len(self.valid_bg_list)
|
204 |
+
# self.valid_bg_list = self.valid_bg_list[: fg_have_bg_num * len(self.valid_fg_list)]
|
205 |
+
assert len(self.alpha) <= len(self.valid_bg_list)
|
206 |
+
self.valid_bg_list = self.valid_bg_list[: len(self.alpha)]
|
207 |
+
|
208 |
+
self.bg = self._list_abspath(self.bg_dir, self.bg_ext, self.valid_bg_list)
|
209 |
+
|
210 |
+
def __len__(self):
|
211 |
+
return len(self.alpha)
|
212 |
+
|
213 |
+
class ImageFileTest(ImageFile):
|
214 |
+
def __init__(self,
|
215 |
+
alpha_dir="test_alpha",
|
216 |
+
merged_dir="test_merged",
|
217 |
+
trimap_dir="test_trimap",
|
218 |
+
alpha_ext=".png",
|
219 |
+
merged_ext=".png",
|
220 |
+
trimap_ext=".png"):
|
221 |
+
super(ImageFileTest, self).__init__(phase="test")
|
222 |
+
|
223 |
+
self.alpha_dir = alpha_dir
|
224 |
+
self.merged_dir = merged_dir
|
225 |
+
self.trimap_dir = trimap_dir
|
226 |
+
self.alpha_ext = alpha_ext
|
227 |
+
self.merged_ext = merged_ext
|
228 |
+
self.trimap_ext = trimap_ext
|
229 |
+
|
230 |
+
self.valid_image_list = self._get_valid_names(self.alpha_dir, self.merged_dir, self.trimap_dir, shuffle=False)
|
231 |
+
|
232 |
+
self.alpha = self._list_abspath(self.alpha_dir, self.alpha_ext, self.valid_image_list)
|
233 |
+
self.merged = self._list_abspath(self.merged_dir, self.merged_ext, self.valid_image_list)
|
234 |
+
self.trimap = self._list_abspath(self.trimap_dir, self.trimap_ext, self.valid_image_list)
|
235 |
+
|
236 |
+
def __len__(self):
|
237 |
+
return len(self.alpha)
|
238 |
+
|
239 |
+
interp_list = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4]
|
240 |
+
|
241 |
+
|
242 |
+
def maybe_random_interp(cv2_interp):
|
243 |
+
if CONFIG.data.random_interp:
|
244 |
+
return np.random.choice(interp_list)
|
245 |
+
else:
|
246 |
+
return cv2_interp
|
247 |
+
|
248 |
+
|
249 |
+
class ToTensor(object):
|
250 |
+
"""
|
251 |
+
Convert ndarrays in sample to Tensors with normalization.
|
252 |
+
"""
|
253 |
+
def __init__(self, phase="test"):
|
254 |
+
self.mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)
|
255 |
+
self.std = torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
|
256 |
+
self.phase = phase
|
257 |
+
|
258 |
+
def __call__(self, sample):
|
259 |
+
image, alpha, trimap, mask = sample['image'][:,:,::-1], sample['alpha'], sample['trimap'], sample['mask']
|
260 |
+
|
261 |
+
alpha[alpha < 0 ] = 0
|
262 |
+
alpha[alpha > 1] = 1
|
263 |
+
|
264 |
+
image = image.transpose((2, 0, 1)).astype(np.float32)
|
265 |
+
alpha = np.expand_dims(alpha.astype(np.float32), axis=0)
|
266 |
+
|
267 |
+
mask = np.expand_dims(mask.astype(np.float32), axis=0)
|
268 |
+
|
269 |
+
image /= 255.
|
270 |
+
|
271 |
+
if self.phase == "train":
|
272 |
+
fg = sample['fg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
|
273 |
+
sample['fg'] = torch.from_numpy(fg)
|
274 |
+
bg = sample['bg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
|
275 |
+
sample['bg'] = torch.from_numpy(bg)
|
276 |
+
|
277 |
+
sample['image'], sample['alpha'], sample['trimap'] = \
|
278 |
+
torch.from_numpy(image), torch.from_numpy(alpha), torch.from_numpy(trimap).to(torch.long)
|
279 |
+
sample['image'] = sample['image']
|
280 |
+
|
281 |
+
if CONFIG.model.trimap_channel == 3:
|
282 |
+
sample['trimap'] = F.one_hot(sample['trimap'], num_classes=3).permute(2,0,1).float()
|
283 |
+
elif CONFIG.model.trimap_channel == 1:
|
284 |
+
sample['trimap'] = sample['trimap'][None,...].float()
|
285 |
+
else:
|
286 |
+
raise NotImplementedError("CONFIG.model.trimap_channel can only be 3 or 1")
|
287 |
+
sample['trimap'][sample['trimap'] < 85] = 0
|
288 |
+
sample['trimap'][sample['trimap'] >= 170] = 1
|
289 |
+
sample['trimap'][sample['trimap'] >= 85] = 0.5
|
290 |
+
|
291 |
+
sample['mask'] = torch.from_numpy(mask).float()
|
292 |
+
|
293 |
+
return sample
|
294 |
+
|
295 |
+
|
296 |
+
class RandomAffine(object):
|
297 |
+
"""
|
298 |
+
Random affine translation
|
299 |
+
"""
|
300 |
+
def __init__(self, degrees, translate=None, scale=None, shear=None, flip=None, resample=False, fillcolor=0):
|
301 |
+
if isinstance(degrees, numbers.Number):
|
302 |
+
if degrees < 0:
|
303 |
+
raise ValueError("If degrees is a single number, it must be positive.")
|
304 |
+
self.degrees = (-degrees, degrees)
|
305 |
+
else:
|
306 |
+
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
|
307 |
+
"degrees should be a list or tuple and it must be of length 2."
|
308 |
+
self.degrees = degrees
|
309 |
+
|
310 |
+
if translate is not None:
|
311 |
+
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
|
312 |
+
"translate should be a list or tuple and it must be of length 2."
|
313 |
+
for t in translate:
|
314 |
+
if not (0.0 <= t <= 1.0):
|
315 |
+
raise ValueError("translation values should be between 0 and 1")
|
316 |
+
self.translate = translate
|
317 |
+
|
318 |
+
if scale is not None:
|
319 |
+
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
|
320 |
+
"scale should be a list or tuple and it must be of length 2."
|
321 |
+
for s in scale:
|
322 |
+
if s <= 0:
|
323 |
+
raise ValueError("scale values should be positive")
|
324 |
+
self.scale = scale
|
325 |
+
|
326 |
+
if shear is not None:
|
327 |
+
if isinstance(shear, numbers.Number):
|
328 |
+
if shear < 0:
|
329 |
+
raise ValueError("If shear is a single number, it must be positive.")
|
330 |
+
self.shear = (-shear, shear)
|
331 |
+
else:
|
332 |
+
assert isinstance(shear, (tuple, list)) and len(shear) == 2, \
|
333 |
+
"shear should be a list or tuple and it must be of length 2."
|
334 |
+
self.shear = shear
|
335 |
+
else:
|
336 |
+
self.shear = shear
|
337 |
+
|
338 |
+
self.resample = resample
|
339 |
+
self.fillcolor = fillcolor
|
340 |
+
self.flip = flip
|
341 |
+
|
342 |
+
@staticmethod
|
343 |
+
def get_params(degrees, translate, scale_ranges, shears, flip, img_size):
|
344 |
+
"""Get parameters for affine transformation
|
345 |
+
|
346 |
+
Returns:
|
347 |
+
sequence: params to be passed to the affine transformation
|
348 |
+
"""
|
349 |
+
angle = random.uniform(degrees[0], degrees[1])
|
350 |
+
if translate is not None:
|
351 |
+
max_dx = translate[0] * img_size[0]
|
352 |
+
max_dy = translate[1] * img_size[1]
|
353 |
+
translations = (np.round(random.uniform(-max_dx, max_dx)),
|
354 |
+
np.round(random.uniform(-max_dy, max_dy)))
|
355 |
+
else:
|
356 |
+
translations = (0, 0)
|
357 |
+
|
358 |
+
if scale_ranges is not None:
|
359 |
+
scale = (random.uniform(scale_ranges[0], scale_ranges[1]),
|
360 |
+
random.uniform(scale_ranges[0], scale_ranges[1]))
|
361 |
+
else:
|
362 |
+
scale = (1.0, 1.0)
|
363 |
+
|
364 |
+
if shears is not None:
|
365 |
+
shear = random.uniform(shears[0], shears[1])
|
366 |
+
else:
|
367 |
+
shear = 0.0
|
368 |
+
|
369 |
+
if flip is not None:
|
370 |
+
flip = (np.random.rand(2) < flip).astype(np.int32) * 2 - 1
|
371 |
+
|
372 |
+
return angle, translations, scale, shear, flip
|
373 |
+
|
374 |
+
def __call__(self, sample):
|
375 |
+
fg, alpha = sample['fg'], sample['alpha']
|
376 |
+
rows, cols, ch = fg.shape
|
377 |
+
if np.maximum(rows, cols) < 1024:
|
378 |
+
params = self.get_params((0, 0), self.translate, self.scale, self.shear, self.flip, fg.size)
|
379 |
+
else:
|
380 |
+
params = self.get_params(self.degrees, self.translate, self.scale, self.shear, self.flip, fg.size)
|
381 |
+
|
382 |
+
center = (cols * 0.5 + 0.5, rows * 0.5 + 0.5)
|
383 |
+
M = self._get_inverse_affine_matrix(center, *params)
|
384 |
+
M = np.array(M).reshape((2, 3))
|
385 |
+
|
386 |
+
fg = cv2.warpAffine(fg, M, (cols, rows),
|
387 |
+
flags=maybe_random_interp(cv2.INTER_NEAREST) + cv2.WARP_INVERSE_MAP)
|
388 |
+
alpha = cv2.warpAffine(alpha, M, (cols, rows),
|
389 |
+
flags=maybe_random_interp(cv2.INTER_NEAREST) + cv2.WARP_INVERSE_MAP)
|
390 |
+
|
391 |
+
sample['fg'], sample['alpha'] = fg, alpha
|
392 |
+
|
393 |
+
return sample
|
394 |
+
|
395 |
+
|
396 |
+
@ staticmethod
|
397 |
+
def _get_inverse_affine_matrix(center, angle, translate, scale, shear, flip):
|
398 |
+
|
399 |
+
angle = math.radians(angle)
|
400 |
+
shear = math.radians(shear)
|
401 |
+
scale_x = 1.0 / scale[0] * flip[0]
|
402 |
+
scale_y = 1.0 / scale[1] * flip[1]
|
403 |
+
|
404 |
+
# Inverted rotation matrix with scale and shear
|
405 |
+
d = math.cos(angle + shear) * math.cos(angle) + math.sin(angle + shear) * math.sin(angle)
|
406 |
+
matrix = [
|
407 |
+
math.cos(angle) * scale_x, math.sin(angle + shear) * scale_x, 0,
|
408 |
+
-math.sin(angle) * scale_y, math.cos(angle + shear) * scale_y, 0
|
409 |
+
]
|
410 |
+
matrix = [m / d for m in matrix]
|
411 |
+
|
412 |
+
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
|
413 |
+
matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1])
|
414 |
+
matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1])
|
415 |
+
|
416 |
+
# Apply center translation: C * RSS^-1 * C^-1 * T^-1
|
417 |
+
matrix[2] += center[0]
|
418 |
+
matrix[5] += center[1]
|
419 |
+
|
420 |
+
return matrix
|
421 |
+
|
422 |
+
|
423 |
+
class RandomJitter(object):
|
424 |
+
"""
|
425 |
+
Random change the hue of the image
|
426 |
+
"""
|
427 |
+
|
428 |
+
def __call__(self, sample):
|
429 |
+
sample_ori = sample.copy()
|
430 |
+
fg, alpha = sample['fg'], sample['alpha']
|
431 |
+
# if alpha is all 0 skip
|
432 |
+
if np.all(alpha==0):
|
433 |
+
return sample_ori
|
434 |
+
# convert to HSV space, convert to float32 image to keep precision during space conversion.
|
435 |
+
fg = cv2.cvtColor(fg.astype(np.float32)/255.0, cv2.COLOR_BGR2HSV)
|
436 |
+
# Hue noise
|
437 |
+
hue_jitter = np.random.randint(-40, 40)
|
438 |
+
fg[:, :, 0] = np.remainder(fg[:, :, 0].astype(np.float32) + hue_jitter, 360)
|
439 |
+
# Saturation noise
|
440 |
+
sat_bar = fg[:, :, 1][alpha > 0].mean()
|
441 |
+
if np.isnan(sat_bar):
|
442 |
+
return sample_ori
|
443 |
+
sat_jitter = np.random.rand()*(1.1 - sat_bar)/5 - (1.1 - sat_bar) / 10
|
444 |
+
sat = fg[:, :, 1]
|
445 |
+
sat = np.abs(sat + sat_jitter)
|
446 |
+
sat[sat>1] = 2 - sat[sat>1]
|
447 |
+
fg[:, :, 1] = sat
|
448 |
+
# Value noise
|
449 |
+
val_bar = fg[:, :, 2][alpha > 0].mean()
|
450 |
+
if np.isnan(val_bar):
|
451 |
+
return sample_ori
|
452 |
+
val_jitter = np.random.rand()*(1.1 - val_bar)/5-(1.1 - val_bar) / 10
|
453 |
+
val = fg[:, :, 2]
|
454 |
+
val = np.abs(val + val_jitter)
|
455 |
+
val[val>1] = 2 - val[val>1]
|
456 |
+
fg[:, :, 2] = val
|
457 |
+
# convert back to BGR space
|
458 |
+
fg = cv2.cvtColor(fg, cv2.COLOR_HSV2BGR)
|
459 |
+
sample['fg'] = fg*255
|
460 |
+
|
461 |
+
return sample
|
462 |
+
|
463 |
+
|
464 |
+
class RandomHorizontalFlip(object):
|
465 |
+
"""
|
466 |
+
Random flip image and label horizontally
|
467 |
+
"""
|
468 |
+
def __init__(self, prob=0.5):
|
469 |
+
self.prob = prob
|
470 |
+
def __call__(self, sample):
|
471 |
+
fg, alpha = sample['fg'], sample['alpha']
|
472 |
+
if np.random.uniform(0, 1) < self.prob:
|
473 |
+
fg = cv2.flip(fg, 1)
|
474 |
+
alpha = cv2.flip(alpha, 1)
|
475 |
+
sample['fg'], sample['alpha'] = fg, alpha
|
476 |
+
|
477 |
+
return sample
|
478 |
+
|
479 |
+
|
480 |
+
class RandomCrop(object):
|
481 |
+
"""
|
482 |
+
Crop randomly the image in a sample, retain the center 1/4 images, and resize to 'output_size'
|
483 |
+
|
484 |
+
:param output_size (tuple or int): Desired output size. If int, square crop
|
485 |
+
is made.
|
486 |
+
"""
|
487 |
+
|
488 |
+
def __init__(self, output_size=( CONFIG.data.crop_size, CONFIG.data.crop_size)):
|
489 |
+
assert isinstance(output_size, (int, tuple))
|
490 |
+
if isinstance(output_size, int):
|
491 |
+
self.output_size = (output_size, output_size)
|
492 |
+
else:
|
493 |
+
assert len(output_size) == 2
|
494 |
+
self.output_size = output_size
|
495 |
+
self.margin = output_size[0] // 2
|
496 |
+
self.logger = logging.getLogger("Logger")
|
497 |
+
|
498 |
+
def __call__(self, sample):
|
499 |
+
fg, alpha, trimap, mask, name = sample['fg'], sample['alpha'], sample['trimap'], sample['mask'], sample['image_name']
|
500 |
+
bg = sample['bg']
|
501 |
+
h, w = trimap.shape
|
502 |
+
bg = cv2.resize(bg, (w, h), interpolation=maybe_random_interp(cv2.INTER_CUBIC))
|
503 |
+
if w < self.output_size[0]+1 or h < self.output_size[1]+1:
|
504 |
+
ratio = 1.1*self.output_size[0]/h if h < w else 1.1*self.output_size[1]/w
|
505 |
+
# self.logger.warning("Size of {} is {}.".format(name, (h, w)))
|
506 |
+
while h < self.output_size[0]+1 or w < self.output_size[1]+1:
|
507 |
+
fg = cv2.resize(fg, (int(w*ratio), int(h*ratio)), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
|
508 |
+
alpha = cv2.resize(alpha, (int(w*ratio), int(h*ratio)),
|
509 |
+
interpolation=maybe_random_interp(cv2.INTER_NEAREST))
|
510 |
+
trimap = cv2.resize(trimap, (int(w*ratio), int(h*ratio)), interpolation=cv2.INTER_NEAREST)
|
511 |
+
bg = cv2.resize(bg, (int(w*ratio), int(h*ratio)), interpolation=maybe_random_interp(cv2.INTER_CUBIC))
|
512 |
+
mask = cv2.resize(mask, (int(w*ratio), int(h*ratio)), interpolation=cv2.INTER_NEAREST)
|
513 |
+
h, w = trimap.shape
|
514 |
+
small_trimap = cv2.resize(trimap, (w//4, h//4), interpolation=cv2.INTER_NEAREST)
|
515 |
+
unknown_list = list(zip(*np.where(small_trimap[self.margin//4:(h-self.margin)//4,
|
516 |
+
self.margin//4:(w-self.margin)//4] == 128)))
|
517 |
+
unknown_num = len(unknown_list)
|
518 |
+
if len(unknown_list) < 10:
|
519 |
+
left_top = (np.random.randint(0, h-self.output_size[0]+1), np.random.randint(0, w-self.output_size[1]+1))
|
520 |
+
else:
|
521 |
+
idx = np.random.randint(unknown_num)
|
522 |
+
left_top = (unknown_list[idx][0]*4, unknown_list[idx][1]*4)
|
523 |
+
|
524 |
+
fg_crop = fg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
|
525 |
+
alpha_crop = alpha[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
|
526 |
+
bg_crop = bg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
|
527 |
+
trimap_crop = trimap[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
|
528 |
+
mask_crop = mask[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
|
529 |
+
|
530 |
+
if len(np.where(trimap==128)[0]) == 0:
|
531 |
+
self.logger.error("{} does not have enough unknown area for crop. Resized to target size."
|
532 |
+
"left_top: {}".format(name, left_top))
|
533 |
+
fg_crop = cv2.resize(fg, self.output_size[::-1], interpolation=maybe_random_interp(cv2.INTER_NEAREST))
|
534 |
+
alpha_crop = cv2.resize(alpha, self.output_size[::-1], interpolation=maybe_random_interp(cv2.INTER_NEAREST))
|
535 |
+
trimap_crop = cv2.resize(trimap, self.output_size[::-1], interpolation=cv2.INTER_NEAREST)
|
536 |
+
bg_crop = cv2.resize(bg, self.output_size[::-1], interpolation=maybe_random_interp(cv2.INTER_CUBIC))
|
537 |
+
mask_crop = cv2.resize(mask, self.output_size[::-1], interpolation=cv2.INTER_NEAREST)
|
538 |
+
|
539 |
+
sample.update({'fg': fg_crop, 'alpha': alpha_crop, 'trimap': trimap_crop, 'mask': mask_crop, 'bg': bg_crop})
|
540 |
+
return sample
|
541 |
+
|
542 |
+
|
543 |
+
class OriginScale(object):
|
544 |
+
def __call__(self, sample):
|
545 |
+
h, w = sample["alpha_shape"]
|
546 |
+
|
547 |
+
if h % 32 == 0 and w % 32 == 0:
|
548 |
+
return sample
|
549 |
+
|
550 |
+
target_h = 32 * ((h - 1) // 32 + 1)
|
551 |
+
target_w = 32 * ((w - 1) // 32 + 1)
|
552 |
+
pad_h = target_h - h
|
553 |
+
pad_w = target_w - w
|
554 |
+
|
555 |
+
padded_image = np.pad(sample['image'], ((0,pad_h), (0, pad_w), (0,0)), mode="reflect")
|
556 |
+
padded_trimap = np.pad(sample['trimap'], ((0,pad_h), (0, pad_w)), mode="reflect")
|
557 |
+
padded_mask = np.pad(sample['mask'], ((0,pad_h), (0, pad_w)), mode="reflect")
|
558 |
+
|
559 |
+
sample['image'] = padded_image
|
560 |
+
sample['trimap'] = padded_trimap
|
561 |
+
sample['mask'] = padded_mask
|
562 |
+
|
563 |
+
return sample
|
564 |
+
|
565 |
+
|
566 |
+
class GenMask(object):
|
567 |
+
def __init__(self):
|
568 |
+
self.erosion_kernels = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,30)]
|
569 |
+
|
570 |
+
def __call__(self, sample):
|
571 |
+
alpha_ori = sample['alpha']
|
572 |
+
h, w = alpha_ori.shape
|
573 |
+
|
574 |
+
max_kernel_size = 30
|
575 |
+
alpha = cv2.resize(alpha_ori, (640,640), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
|
576 |
+
|
577 |
+
### generate trimap
|
578 |
+
fg_mask = (alpha + 1e-5).astype(np.int32).astype(np.uint8)
|
579 |
+
bg_mask = (1 - alpha + 1e-5).astype(np.int32).astype(np.uint8)
|
580 |
+
fg_mask = cv2.erode(fg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
581 |
+
bg_mask = cv2.erode(bg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
582 |
+
|
583 |
+
fg_width = np.random.randint(1, 30)
|
584 |
+
bg_width = np.random.randint(1, 30)
|
585 |
+
fg_mask = (alpha + 1e-5).astype(np.int32).astype(np.uint8)
|
586 |
+
bg_mask = (1 - alpha + 1e-5).astype(np.int32).astype(np.uint8)
|
587 |
+
fg_mask = cv2.erode(fg_mask, self.erosion_kernels[fg_width])
|
588 |
+
bg_mask = cv2.erode(bg_mask, self.erosion_kernels[bg_width])
|
589 |
+
|
590 |
+
trimap = np.ones_like(alpha) * 128
|
591 |
+
trimap[fg_mask == 1] = 255
|
592 |
+
trimap[bg_mask == 1] = 0
|
593 |
+
|
594 |
+
trimap = cv2.resize(trimap, (w,h), interpolation=cv2.INTER_NEAREST)
|
595 |
+
sample['trimap'] = trimap
|
596 |
+
|
597 |
+
### generate mask
|
598 |
+
low = 0.01
|
599 |
+
high = 1.0
|
600 |
+
thres = random.random() * (high - low) + low
|
601 |
+
seg_mask = (alpha >= thres).astype(np.int32).astype(np.uint8)
|
602 |
+
random_num = random.randint(0,3)
|
603 |
+
if random_num == 0:
|
604 |
+
seg_mask = cv2.erode(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
605 |
+
elif random_num == 1:
|
606 |
+
seg_mask = cv2.dilate(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
607 |
+
elif random_num == 2:
|
608 |
+
seg_mask = cv2.erode(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
609 |
+
seg_mask = cv2.dilate(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
610 |
+
elif random_num == 3:
|
611 |
+
seg_mask = cv2.dilate(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
612 |
+
seg_mask = cv2.erode(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
613 |
+
|
614 |
+
seg_mask = cv2.resize(seg_mask, (w,h), interpolation=cv2.INTER_NEAREST)
|
615 |
+
sample['mask'] = seg_mask
|
616 |
+
|
617 |
+
return sample
|
618 |
+
|
619 |
+
|
620 |
+
class Composite(object):
|
621 |
+
def __call__(self, sample):
|
622 |
+
fg, bg, alpha = sample['fg'], sample['bg'], sample['alpha']
|
623 |
+
alpha[alpha < 0 ] = 0
|
624 |
+
alpha[alpha > 1] = 1
|
625 |
+
fg[fg < 0 ] = 0
|
626 |
+
fg[fg > 255] = 255
|
627 |
+
bg[bg < 0 ] = 0
|
628 |
+
bg[bg > 255] = 255
|
629 |
+
|
630 |
+
image = fg * alpha[:, :, None] + bg * (1 - alpha[:, :, None])
|
631 |
+
sample['image'] = image
|
632 |
+
return sample
|
633 |
+
|
634 |
+
|
635 |
+
class CutMask(object):
|
636 |
+
def __init__(self, perturb_prob = 0):
|
637 |
+
self.perturb_prob = perturb_prob
|
638 |
+
|
639 |
+
def __call__(self, sample):
|
640 |
+
if np.random.rand() < self.perturb_prob:
|
641 |
+
return sample
|
642 |
+
|
643 |
+
mask = sample['mask'] # H x W, trimap 0--255, segmask 0--1, alpha 0--1
|
644 |
+
h, w = mask.shape
|
645 |
+
perturb_size_h, perturb_size_w = random.randint(h // 4, h // 2), random.randint(w // 4, w // 2)
|
646 |
+
x = random.randint(0, h - perturb_size_h)
|
647 |
+
y = random.randint(0, w - perturb_size_w)
|
648 |
+
x1 = random.randint(0, h - perturb_size_h)
|
649 |
+
y1 = random.randint(0, w - perturb_size_w)
|
650 |
+
|
651 |
+
mask[x:x+perturb_size_h, y:y+perturb_size_w] = mask[x1:x1+perturb_size_h, y1:y1+perturb_size_w].copy()
|
652 |
+
|
653 |
+
sample['mask'] = mask
|
654 |
+
return sample
|
655 |
+
|
656 |
+
|
657 |
+
class ScaleFg(object):
|
658 |
+
def __init__(self, min_scale_fg_scale=0.5, max_scale_fg_scale=1.0):
|
659 |
+
self.min_scale_fg_scale = min_scale_fg_scale
|
660 |
+
self.max_scale_fg_scale = max_scale_fg_scale
|
661 |
+
|
662 |
+
def __call__(self, sample):
|
663 |
+
scale_factor = np.random.uniform(low=self.min_scale_fg_scale, high=self.max_scale_fg_scale)
|
664 |
+
|
665 |
+
fg, alpha = sample['fg'], sample['alpha'] # np.array(): [H, W, 3] 0 ~ 255 , [H, W] 0.0 ~ 1.0
|
666 |
+
h, w = alpha.shape
|
667 |
+
scale_h, scale_w = int(h * scale_factor), int(w * scale_factor)
|
668 |
+
|
669 |
+
new_fg, new_alpha = np.zeros_like(fg), np.zeros_like(alpha)
|
670 |
+
fg = cv2.resize(fg, (scale_w, scale_h), interpolation=cv2.INTER_LINEAR)
|
671 |
+
alpha = cv2.resize(alpha, (scale_w, scale_h), interpolation=cv2.INTER_LINEAR)
|
672 |
+
|
673 |
+
if scale_factor <= 1:
|
674 |
+
offset_h, offset_w = np.random.randint(h - scale_h + 1), np.random.randint(w - scale_w + 1)
|
675 |
+
new_fg[offset_h: offset_h + scale_h, offset_w: offset_w + scale_w, :] = fg
|
676 |
+
new_alpha[offset_h: offset_h + scale_h, offset_w: offset_w + scale_w] = alpha
|
677 |
+
else:
|
678 |
+
offset_h, offset_w = np.random.randint(scale_h - h + 1), np.random.randint(scale_w - w + 1)
|
679 |
+
new_fg = fg[offset_h: offset_h + scale_h, offset_w: offset_w + scale_w, :]
|
680 |
+
new_alpha = alpha[offset_h: offset_h + scale_h, offset_w: offset_w + scale_w]
|
681 |
+
|
682 |
+
sample['fg'], sample['alpha'] = new_fg, new_alpha
|
683 |
+
return sample
|
684 |
+
|
685 |
+
class GenBBox(object):
|
686 |
+
def __init__(self, bbox_offset_factor = 0.1, random_crop_bbox = None, train_or_test = 'train', dataset_type = None, random_auto_matting=None):
|
687 |
+
self.bbox_offset_factor = bbox_offset_factor
|
688 |
+
self.random_crop_bbox = random_crop_bbox
|
689 |
+
self.train_or_test = train_or_test
|
690 |
+
self.dataset_type = dataset_type
|
691 |
+
self.random_auto_matting = random_auto_matting
|
692 |
+
|
693 |
+
def __call__(self, sample):
|
694 |
+
|
695 |
+
alpha = sample['alpha'] # [1, H, W] 0.0 ~ 1.0
|
696 |
+
indices = torch.nonzero(alpha[0], as_tuple=True)
|
697 |
+
|
698 |
+
if len(indices[0]) > 0:
|
699 |
+
|
700 |
+
min_x, min_y = torch.min(indices[1]), torch.min(indices[0])
|
701 |
+
max_x, max_y = torch.max(indices[1]), torch.max(indices[0])
|
702 |
+
|
703 |
+
if self.random_crop_bbox is not None and np.random.uniform(0, 1) < self.random_crop_bbox:
|
704 |
+
ori_h_w = (sample['alpha'].shape[-2], sample['alpha'].shape[-1])
|
705 |
+
sample['alpha'] = F.interpolate(sample['alpha'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='bilinear', align_corners=False)[0]
|
706 |
+
sample['image'] = F.interpolate(sample['image'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='bilinear', align_corners=False)[0]
|
707 |
+
sample['trimap'] = F.interpolate(sample['trimap'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='nearest')[0]
|
708 |
+
bbox = torch.tensor([[0, 0, ori_h_w[1] - 1, ori_h_w[0] - 1]])
|
709 |
+
|
710 |
+
elif self.bbox_offset_factor != 0:
|
711 |
+
bbox_w = max(1, max_x - min_x)
|
712 |
+
bbox_h = max(1, max_y - min_y)
|
713 |
+
offset_w = math.ceil(self.bbox_offset_factor * bbox_w)
|
714 |
+
offset_h = math.ceil(self.bbox_offset_factor * bbox_h)
|
715 |
+
|
716 |
+
min_x = max(0, min_x + np.random.randint(-offset_w, offset_w))
|
717 |
+
max_x = min(alpha.shape[2] - 1, max_x + np.random.randint(-offset_w, offset_w))
|
718 |
+
min_y = max(0, min_y + np.random.randint(-offset_h, offset_h))
|
719 |
+
max_y = min(alpha.shape[1] - 1, max_y + np.random.randint(-offset_h, offset_h))
|
720 |
+
bbox = torch.tensor([[min_x, min_y, max_x, max_y]])
|
721 |
+
else:
|
722 |
+
bbox = torch.tensor([[min_x, min_y, max_x, max_y]])
|
723 |
+
|
724 |
+
if self.random_auto_matting is not None and np.random.uniform(0, 1) < self.random_auto_matting:
|
725 |
+
bbox = torch.tensor([[0, 0, alpha.shape[2] - 1, alpha.shape[1] - 1]])
|
726 |
+
|
727 |
+
else:
|
728 |
+
bbox = torch.zeros(1, 4)
|
729 |
+
|
730 |
+
sample['bbox'] = bbox.float()
|
731 |
+
return sample
|
732 |
+
|
733 |
+
class DataGenerator(Dataset):
|
734 |
+
def __init__(
|
735 |
+
self,
|
736 |
+
data,
|
737 |
+
phase="train",
|
738 |
+
crop_size=512,
|
739 |
+
remove_multi_fg=False,
|
740 |
+
min_scale_fg_scale=None,
|
741 |
+
max_scale_fg_scale=None,
|
742 |
+
with_bbox = False,
|
743 |
+
bbox_offset_factor = None,
|
744 |
+
return_keys = None,
|
745 |
+
random_crop_bbox = None,
|
746 |
+
dataset_name = None,
|
747 |
+
random_auto_matting = None,
|
748 |
+
):
|
749 |
+
self.phase = phase
|
750 |
+
# self.crop_size = CONFIG.data.crop_size
|
751 |
+
self.crop_size = crop_size
|
752 |
+
self.remove_multi_fg = remove_multi_fg
|
753 |
+
self.with_bbox = with_bbox
|
754 |
+
self.bbox_offset_factor = bbox_offset_factor
|
755 |
+
self.alpha = data.alpha
|
756 |
+
self.return_keys = return_keys
|
757 |
+
self.random_crop_bbox = random_crop_bbox
|
758 |
+
self.dataset_name = dataset_name
|
759 |
+
self.random_auto_matting = random_auto_matting
|
760 |
+
|
761 |
+
if self.phase == "train":
|
762 |
+
self.fg = data.fg
|
763 |
+
self.bg = data.bg
|
764 |
+
self.merged = []
|
765 |
+
self.trimap = []
|
766 |
+
else:
|
767 |
+
self.fg = []
|
768 |
+
self.bg = []
|
769 |
+
self.merged = data.merged
|
770 |
+
self.trimap = data.trimap
|
771 |
+
|
772 |
+
train_trans = [
|
773 |
+
RandomAffine(degrees=30, scale=[0.8, 1.25], shear=10, flip=0.5),
|
774 |
+
GenMask(),
|
775 |
+
CutMask(perturb_prob=CONFIG.data.cutmask_prob),
|
776 |
+
RandomCrop((self.crop_size, self.crop_size)),
|
777 |
+
RandomJitter(),
|
778 |
+
Composite(),
|
779 |
+
ToTensor(phase="train")
|
780 |
+
]
|
781 |
+
if min_scale_fg_scale is not None:
|
782 |
+
train_trans.insert(0, ScaleFg(min_scale_fg_scale, max_scale_fg_scale))
|
783 |
+
if self.with_bbox:
|
784 |
+
train_trans.append(GenBBox(bbox_offset_factor=self.bbox_offset_factor, random_crop_bbox=self.random_crop_bbox, random_auto_matting=self.random_auto_matting))
|
785 |
+
|
786 |
+
test_trans = [ OriginScale(), ToTensor() ]
|
787 |
+
|
788 |
+
self.transform = {
|
789 |
+
'train':
|
790 |
+
transforms.Compose(train_trans),
|
791 |
+
'val':
|
792 |
+
transforms.Compose([
|
793 |
+
OriginScale(),
|
794 |
+
ToTensor()
|
795 |
+
]),
|
796 |
+
'test':
|
797 |
+
transforms.Compose(test_trans)
|
798 |
+
}[phase]
|
799 |
+
|
800 |
+
self.fg_num = len(self.fg)
|
801 |
+
|
802 |
+
def select_keys(self, sample):
|
803 |
+
new_sample = {}
|
804 |
+
for key, val in sample.items():
|
805 |
+
if key in self.return_keys:
|
806 |
+
new_sample[key] = val
|
807 |
+
return new_sample
|
808 |
+
|
809 |
+
def __getitem__(self, idx):
|
810 |
+
if self.phase == "train":
|
811 |
+
fg = cv2.imread(self.fg[idx % self.fg_num])
|
812 |
+
alpha = cv2.imread(self.alpha[idx % self.fg_num], 0).astype(np.float32)/255
|
813 |
+
bg = cv2.imread(self.bg[idx], 1)
|
814 |
+
|
815 |
+
if not self.remove_multi_fg:
|
816 |
+
fg, alpha, multi_fg = self._composite_fg(fg, alpha, idx)
|
817 |
+
else:
|
818 |
+
multi_fg = False
|
819 |
+
image_name = os.path.split(self.fg[idx % self.fg_num])[-1]
|
820 |
+
sample = {'fg': fg, 'alpha': alpha, 'bg': bg, 'image_name': image_name, 'multi_fg': multi_fg}
|
821 |
+
|
822 |
+
else:
|
823 |
+
image = cv2.imread(self.merged[idx])
|
824 |
+
alpha = cv2.imread(self.alpha[idx], 0)/255.
|
825 |
+
trimap = cv2.imread(self.trimap[idx], 0)
|
826 |
+
mask = (trimap >= 170).astype(np.float32)
|
827 |
+
image_name = os.path.split(self.merged[idx])[-1]
|
828 |
+
|
829 |
+
sample = {'image': image, 'alpha': alpha, 'trimap': trimap, 'mask': mask, 'image_name': image_name, 'alpha_shape': alpha.shape}
|
830 |
+
|
831 |
+
sample = self.transform(sample)
|
832 |
+
|
833 |
+
if self.return_keys is not None:
|
834 |
+
sample = self.select_keys(sample)
|
835 |
+
if self.dataset_name is not None:
|
836 |
+
sample['dataset_name'] = self.dataset_name
|
837 |
+
return sample
|
838 |
+
|
839 |
+
def _composite_fg(self, fg, alpha, idx):
|
840 |
+
|
841 |
+
multi_fg = False
|
842 |
+
if np.random.rand() < 0.5:
|
843 |
+
idx2 = np.random.randint(self.fg_num) + idx
|
844 |
+
fg2 = cv2.imread(self.fg[idx2 % self.fg_num])
|
845 |
+
alpha2 = cv2.imread(self.alpha[idx2 % self.fg_num], 0).astype(np.float32)/255.
|
846 |
+
h, w = alpha.shape
|
847 |
+
fg2 = cv2.resize(fg2, (w, h), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
|
848 |
+
alpha2 = cv2.resize(alpha2, (w, h), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
|
849 |
+
|
850 |
+
alpha_tmp = 1 - (1 - alpha) * (1 - alpha2)
|
851 |
+
if np.any(alpha_tmp < 1):
|
852 |
+
fg = fg.astype(np.float32) * alpha[:,:,None] + fg2.astype(np.float32) * (1 - alpha[:,:,None])
|
853 |
+
# The overlap of two 50% transparency should be 25%
|
854 |
+
alpha = alpha_tmp
|
855 |
+
fg = fg.astype(np.uint8)
|
856 |
+
multi_fg = True
|
857 |
+
|
858 |
+
if np.random.rand() < 0.25:
|
859 |
+
# fg = cv2.resize(fg, (640, 640), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
|
860 |
+
# alpha = cv2.resize(alpha, (640, 640), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
|
861 |
+
fg = cv2.resize(fg, (1280, 1280), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
|
862 |
+
alpha = cv2.resize(alpha, (1280, 1280), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
|
863 |
+
|
864 |
+
return fg, alpha, multi_fg
|
865 |
+
|
866 |
+
def __len__(self):
|
867 |
+
if self.phase == "train":
|
868 |
+
return len(self.bg)
|
869 |
+
else:
|
870 |
+
return len(self.alpha)
|
871 |
+
|
872 |
+
|
873 |
+
class ResziePad(object):
|
874 |
+
|
875 |
+
def __init__(self, target_size=1024):
|
876 |
+
self.target_size = target_size
|
877 |
+
|
878 |
+
def __call__(self, sample):
|
879 |
+
_, H, W = sample['image'].shape
|
880 |
+
|
881 |
+
scale = self.target_size * 1.0 / max(H, W)
|
882 |
+
new_H, new_W = H * scale, W * scale
|
883 |
+
new_W = int(new_W + 0.5)
|
884 |
+
new_H = int(new_H + 0.5)
|
885 |
+
|
886 |
+
choice = {'image', 'trimap', 'alpha'} if 'trimap' in sample.keys() else {'image', 'alpha'}
|
887 |
+
for key in choice:
|
888 |
+
if key in {'image', 'trimap'}:
|
889 |
+
sample[key] = F.interpolate(sample[key][None], size=(new_H, new_W), mode='bilinear', align_corners=False)[0]
|
890 |
+
else:
|
891 |
+
# sample[key] = F.interpolate(sample[key][None], size=(new_H, new_W), mode='nearest')[0]
|
892 |
+
sample[key] = F.interpolate(sample[key][None], size=(new_H, new_W), mode='bilinear', align_corners=False)[0]
|
893 |
+
padding = torch.zeros([sample[key].shape[0], self.target_size, self.target_size], dtype=sample[key].dtype, device=sample[key].device)
|
894 |
+
padding[:, : new_H, : new_W] = sample[key]
|
895 |
+
sample[key] = padding
|
896 |
+
|
897 |
+
return sample
|
898 |
+
|
899 |
+
|
900 |
+
class Cv2ResziePad(object):
|
901 |
+
|
902 |
+
def __init__(self, target_size=1024):
|
903 |
+
self.target_size = target_size
|
904 |
+
|
905 |
+
def __call__(self, sample):
|
906 |
+
H, W, _ = sample['image'].shape
|
907 |
+
|
908 |
+
scale = self.target_size * 1.0 / max(H, W)
|
909 |
+
new_H, new_W = H * scale, W * scale
|
910 |
+
new_W = int(new_W + 0.5)
|
911 |
+
new_H = int(new_H + 0.5)
|
912 |
+
|
913 |
+
choice = {'image', 'trimap', 'alpha'} if 'trimap' in sample.keys() and sample['trimap'] is not None else {'image', 'alpha'}
|
914 |
+
for key in choice:
|
915 |
+
sample[key] = cv2.resize(sample[key], (new_W, new_H), interpolation=cv2.INTER_LINEAR) # cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC
|
916 |
+
|
917 |
+
if key == 'image':
|
918 |
+
padding = np.zeros([self.target_size, self.target_size, sample[key].shape[-1]], dtype=sample[key].dtype)
|
919 |
+
padding[: new_H, : new_W, :] = sample[key]
|
920 |
+
sample[key] = padding
|
921 |
+
sample[key] = sample[key][:, :, ::-1].transpose((2, 0, 1)).astype(np.float32) #/ 255.0
|
922 |
+
else:
|
923 |
+
padding = np.zeros([self.target_size, self.target_size], dtype=sample[key].dtype)
|
924 |
+
padding[: new_H, : new_W] = sample[key]
|
925 |
+
sample[key] = padding
|
926 |
+
sample[key] = sample[key][None].astype(np.float32)
|
927 |
+
sample[key] = torch.from_numpy(sample[key])
|
928 |
+
|
929 |
+
return sample
|
930 |
+
|
931 |
+
|
932 |
+
class AdobeCompositionTest(Dataset):
|
933 |
+
def __init__(self, data_dir, target_size=1024, multi_fg=None):
|
934 |
+
self.data_dir = data_dir
|
935 |
+
self.file_names = sorted(os.listdir(os.path.join(self.data_dir, 'merged')))
|
936 |
+
|
937 |
+
test_trans = [
|
938 |
+
ResziePad(target_size=target_size),
|
939 |
+
GenBBox(bbox_offset_factor=0)
|
940 |
+
]
|
941 |
+
self.transform = transforms.Compose(test_trans)
|
942 |
+
self.multi_fg = multi_fg
|
943 |
+
|
944 |
+
def __len__(self): # 1000
|
945 |
+
return len(self.file_names)
|
946 |
+
|
947 |
+
def __getitem__(self, idx):
|
948 |
+
phas = Image.open(os.path.join(self.data_dir, 'alpha_copy', self.file_names[idx])).convert('L')
|
949 |
+
tris = Image.open(os.path.join(self.data_dir, 'trimaps', self.file_names[idx]))
|
950 |
+
imgs = Image.open(os.path.join(self.data_dir, 'merged', self.file_names[idx]))
|
951 |
+
sample = {
|
952 |
+
'ori_h_w': (imgs.size[1], imgs.size[0]),
|
953 |
+
'data_type': 'Adobe'
|
954 |
+
}
|
955 |
+
|
956 |
+
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
|
957 |
+
sample['trimap'] = torchvision.transforms.functional.to_tensor(tris) * 255.0
|
958 |
+
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
|
959 |
+
sample['image_name'] = 'Adobe_' + self.file_names[idx]
|
960 |
+
|
961 |
+
sample = self.transform(sample)
|
962 |
+
sample['trimap'][sample['trimap'] < 85] = 0
|
963 |
+
sample['trimap'][sample['trimap'] >= 170] = 1
|
964 |
+
sample['trimap'][sample['trimap'] >= 85] = 0.5
|
965 |
+
|
966 |
+
if self.multi_fg is not None:
|
967 |
+
sample['multi_fg'] = torch.tensor(self.multi_fg)
|
968 |
+
|
969 |
+
return sample
|
970 |
+
|
971 |
+
|
972 |
+
class SIMTest(Dataset):
|
973 |
+
def __init__(self, data_dir, target_size=1024, multi_fg=None):
|
974 |
+
self.data_dir = data_dir
|
975 |
+
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, '*', 'alpha', '*']))) # [: 10]
|
976 |
+
test_trans = [
|
977 |
+
ResziePad(target_size=target_size),
|
978 |
+
GenBBox(bbox_offset_factor=0)
|
979 |
+
]
|
980 |
+
self.transform = transforms.Compose(test_trans)
|
981 |
+
self.multi_fg = multi_fg
|
982 |
+
|
983 |
+
def __len__(self): # 1000
|
984 |
+
return len(self.file_names)
|
985 |
+
|
986 |
+
def __getitem__(self, idx):
|
987 |
+
phas = Image.open(self.file_names[idx]).convert('L')
|
988 |
+
# tris = Image.open(self.file_names[idx].replace('alpha', 'trimap'))
|
989 |
+
imgs = Image.open(self.file_names[idx].replace('alpha', 'merged'))
|
990 |
+
sample = {
|
991 |
+
'ori_h_w': (imgs.size[1], imgs.size[0]),
|
992 |
+
'data_type': 'SIM'
|
993 |
+
}
|
994 |
+
|
995 |
+
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
|
996 |
+
# sample['trimap'] = torchvision.transforms.functional.to_tensor(tris) * 255.0
|
997 |
+
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
|
998 |
+
sample['image_name'] = 'SIM_{}_{}'.format(self.file_names[idx].split('/')[-3], self.file_names[idx].split('/')[-1])
|
999 |
+
|
1000 |
+
sample = self.transform(sample)
|
1001 |
+
# sample['trimap'][sample['trimap'] < 85] = 0
|
1002 |
+
# sample['trimap'][sample['trimap'] >= 170] = 1
|
1003 |
+
# sample['trimap'][sample['trimap'] >= 85] = 0.5
|
1004 |
+
|
1005 |
+
if self.multi_fg is not None:
|
1006 |
+
sample['multi_fg'] = torch.tensor(self.multi_fg)
|
1007 |
+
|
1008 |
+
return sample
|
1009 |
+
|
1010 |
+
|
1011 |
+
class RW100Test(Dataset):
|
1012 |
+
def __init__(self, data_dir, target_size=1024, multi_fg=None):
|
1013 |
+
self.data_dir = data_dir
|
1014 |
+
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, 'mask', '*'])))
|
1015 |
+
|
1016 |
+
self.name_to_idx = dict()
|
1017 |
+
for idx, file_name in enumerate(self.file_names):
|
1018 |
+
self.name_to_idx[file_name.split('/')[-1].split('.')[0]] = idx
|
1019 |
+
|
1020 |
+
test_trans = [
|
1021 |
+
ResziePad(target_size=target_size),
|
1022 |
+
GenBBox(bbox_offset_factor=0, train_or_test='test', dataset_type='RW100')
|
1023 |
+
]
|
1024 |
+
self.transform = transforms.Compose(test_trans)
|
1025 |
+
self.multi_fg = multi_fg
|
1026 |
+
|
1027 |
+
def __len__(self): # 1000
|
1028 |
+
return len(self.file_names)
|
1029 |
+
|
1030 |
+
def __getitem__(self, idx):
|
1031 |
+
phas = Image.open(self.file_names[idx]).convert('L')
|
1032 |
+
imgs = Image.open(self.file_names[idx].replace('mask', 'image')[:-6] + '.jpg')
|
1033 |
+
sample = {
|
1034 |
+
'ori_h_w': (imgs.size[1], imgs.size[0]),
|
1035 |
+
'data_type': 'RW100'
|
1036 |
+
}
|
1037 |
+
|
1038 |
+
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
|
1039 |
+
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
|
1040 |
+
sample['image_name'] = 'RW100_' + self.file_names[idx].split('/')[-1]
|
1041 |
+
|
1042 |
+
sample = self.transform(sample)
|
1043 |
+
|
1044 |
+
if self.multi_fg is not None:
|
1045 |
+
sample['multi_fg'] = torch.tensor(self.multi_fg)
|
1046 |
+
|
1047 |
+
return sample
|
1048 |
+
|
1049 |
+
|
1050 |
+
class AIM500Test(Dataset):
|
1051 |
+
def __init__(self, data_dir, target_size=1024, multi_fg=None):
|
1052 |
+
self.data_dir = data_dir
|
1053 |
+
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, 'original', '*'])))
|
1054 |
+
|
1055 |
+
self.name_to_idx = dict()
|
1056 |
+
for idx, file_name in enumerate(self.file_names):
|
1057 |
+
self.name_to_idx[file_name.split('/')[-1].split('.')[0]] = idx
|
1058 |
+
|
1059 |
+
test_trans = [
|
1060 |
+
ResziePad(target_size=target_size),
|
1061 |
+
GenBBox(bbox_offset_factor=0)
|
1062 |
+
]
|
1063 |
+
self.transform = transforms.Compose(test_trans)
|
1064 |
+
self.multi_fg = multi_fg
|
1065 |
+
|
1066 |
+
def __len__(self): # 1000
|
1067 |
+
return len(self.file_names)
|
1068 |
+
|
1069 |
+
def __getitem__(self, idx):
|
1070 |
+
phas = Image.open(self.file_names[idx].replace('original', 'mask').replace('jpg', 'png')).convert('L')
|
1071 |
+
# tris = Image.open(self.file_names[idx].replace('original', 'trimap').replace('jpg', 'png')).convert('L')
|
1072 |
+
imgs = Image.open(self.file_names[idx])
|
1073 |
+
sample = {
|
1074 |
+
'ori_h_w': (imgs.size[1], imgs.size[0]),
|
1075 |
+
'data_type': 'AIM500'
|
1076 |
+
}
|
1077 |
+
|
1078 |
+
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
|
1079 |
+
# sample['trimap'] = torchvision.transforms.functional.to_tensor(tris) * 255.0
|
1080 |
+
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
|
1081 |
+
sample['image_name'] = 'AIM500_' + self.file_names[idx].split('/')[-1]
|
1082 |
+
|
1083 |
+
sample = self.transform(sample)
|
1084 |
+
# sample['trimap'][sample['trimap'] < 85] = 0
|
1085 |
+
# sample['trimap'][sample['trimap'] >= 170] = 1
|
1086 |
+
# sample['trimap'][sample['trimap'] >= 85] = 0.5
|
1087 |
+
|
1088 |
+
if self.multi_fg is not None:
|
1089 |
+
sample['multi_fg'] = torch.tensor(self.multi_fg)
|
1090 |
+
|
1091 |
+
return sample
|
1092 |
+
|
1093 |
+
|
1094 |
+
class RWP636Test(Dataset):
|
1095 |
+
def __init__(self, data_dir, target_size=1024, multi_fg=None):
|
1096 |
+
self.data_dir = data_dir
|
1097 |
+
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, 'image', '*'])))
|
1098 |
+
|
1099 |
+
self.name_to_idx = dict()
|
1100 |
+
for idx, file_name in enumerate(self.file_names):
|
1101 |
+
self.name_to_idx[file_name.split('/')[-1].split('.')[0]] = idx
|
1102 |
+
|
1103 |
+
test_trans = [
|
1104 |
+
ResziePad(target_size=target_size),
|
1105 |
+
GenBBox(bbox_offset_factor=0)
|
1106 |
+
]
|
1107 |
+
self.transform = transforms.Compose(test_trans)
|
1108 |
+
self.multi_fg = multi_fg
|
1109 |
+
|
1110 |
+
def __len__(self): # 1000
|
1111 |
+
return len(self.file_names)
|
1112 |
+
|
1113 |
+
def __getitem__(self, idx):
|
1114 |
+
phas = Image.open(self.file_names[idx].replace('image', 'alpha').replace('jpg', 'png')).convert('L')
|
1115 |
+
imgs = Image.open(self.file_names[idx])
|
1116 |
+
sample = {
|
1117 |
+
'ori_h_w': (imgs.size[1], imgs.size[0]),
|
1118 |
+
'data_type': 'RWP636'
|
1119 |
+
}
|
1120 |
+
|
1121 |
+
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
|
1122 |
+
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
|
1123 |
+
sample['image_name'] = 'RWP636_' + self.file_names[idx].split('/')[-1]
|
1124 |
+
|
1125 |
+
sample = self.transform(sample)
|
1126 |
+
|
1127 |
+
if self.multi_fg is not None:
|
1128 |
+
sample['multi_fg'] = torch.tensor(self.multi_fg)
|
1129 |
+
|
1130 |
+
return sample
|
1131 |
+
|
1132 |
+
|
1133 |
+
class AM2KTest(Dataset):
|
1134 |
+
def __init__(self, data_dir, target_size=1024, multi_fg=None):
|
1135 |
+
self.data_dir = data_dir
|
1136 |
+
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, 'validation/original', '*'])))
|
1137 |
+
test_trans = [
|
1138 |
+
ResziePad(target_size=target_size),
|
1139 |
+
GenBBox(bbox_offset_factor=0)
|
1140 |
+
]
|
1141 |
+
self.transform = transforms.Compose(test_trans)
|
1142 |
+
self.multi_fg = multi_fg
|
1143 |
+
|
1144 |
+
def __len__(self): # 1000
|
1145 |
+
return len(self.file_names)
|
1146 |
+
|
1147 |
+
def __getitem__(self, idx):
|
1148 |
+
phas = Image.open(self.file_names[idx].replace('original', 'mask').replace('jpg', 'png')).convert('L')
|
1149 |
+
# tris = Image.open(self.file_names[idx].replace('original', 'trimap').replace('jpg', 'png')).convert('L')
|
1150 |
+
imgs = Image.open(self.file_names[idx])
|
1151 |
+
sample = {
|
1152 |
+
'ori_h_w': (imgs.size[1], imgs.size[0]),
|
1153 |
+
'data_type': 'AM2K'
|
1154 |
+
}
|
1155 |
+
|
1156 |
+
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
|
1157 |
+
# sample['trimap'] = torchvision.transforms.functional.to_tensor(tris) * 255.0
|
1158 |
+
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
|
1159 |
+
sample['image_name'] = 'AM2K_' + self.file_names[idx].split('/')[-1]
|
1160 |
+
|
1161 |
+
sample = self.transform(sample)
|
1162 |
+
# sample['trimap'][sample['trimap'] < 85] = 0
|
1163 |
+
# sample['trimap'][sample['trimap'] >= 170] = 1
|
1164 |
+
# sample['trimap'][sample['trimap'] >= 85] = 0.5
|
1165 |
+
|
1166 |
+
if self.multi_fg is not None:
|
1167 |
+
sample['multi_fg'] = torch.tensor(self.multi_fg)
|
1168 |
+
|
1169 |
+
return sample
|
1170 |
+
|
1171 |
+
|
1172 |
+
class P3M500Test(Dataset):
|
1173 |
+
def __init__(self, data_dir, target_size=1024, multi_fg=None):
|
1174 |
+
self.data_dir = data_dir
|
1175 |
+
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, 'original_image', '*'])))
|
1176 |
+
|
1177 |
+
self.name_to_idx = dict()
|
1178 |
+
for idx, file_name in enumerate(self.file_names):
|
1179 |
+
self.name_to_idx[file_name.split('/')[-1].split('.')[0]] = idx
|
1180 |
+
|
1181 |
+
test_trans = [
|
1182 |
+
ResziePad(target_size=target_size),
|
1183 |
+
GenBBox(bbox_offset_factor=0)
|
1184 |
+
]
|
1185 |
+
self.transform = transforms.Compose(test_trans)
|
1186 |
+
self.multi_fg = multi_fg
|
1187 |
+
|
1188 |
+
def __len__(self): # 1000
|
1189 |
+
return len(self.file_names)
|
1190 |
+
|
1191 |
+
def __getitem__(self, idx):
|
1192 |
+
phas = Image.open(self.file_names[idx].replace('original_image', 'mask').replace('jpg', 'png')).convert('L')
|
1193 |
+
# tris = Image.open(self.file_names[idx].replace('original_image', 'trimap').replace('jpg', 'png')).convert('L')
|
1194 |
+
imgs = Image.open(self.file_names[idx])
|
1195 |
+
sample = {
|
1196 |
+
'ori_h_w': (imgs.size[1], imgs.size[0]),
|
1197 |
+
'data_type': 'P3M500'
|
1198 |
+
}
|
1199 |
+
|
1200 |
+
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
|
1201 |
+
# sample['trimap'] = torchvision.transforms.functional.to_tensor(tris) * 255.0
|
1202 |
+
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
|
1203 |
+
sample['image_name'] = 'P3M500_' + self.file_names[idx].split('/')[-1]
|
1204 |
+
|
1205 |
+
sample = self.transform(sample)
|
1206 |
+
# sample['trimap'][sample['trimap'] < 85] = 0
|
1207 |
+
# sample['trimap'][sample['trimap'] >= 170] = 1
|
1208 |
+
# sample['trimap'][sample['trimap'] >= 85] = 0.5
|
1209 |
+
|
1210 |
+
if self.multi_fg is not None:
|
1211 |
+
sample['multi_fg'] = torch.tensor(self.multi_fg)
|
1212 |
+
|
1213 |
+
return sample
|
1214 |
+
|
1215 |
+
|
1216 |
+
class MattingTest(Dataset):
|
1217 |
+
def __init__(
|
1218 |
+
self,
|
1219 |
+
data_type,
|
1220 |
+
data_dir,
|
1221 |
+
image_sub_path,
|
1222 |
+
alpha_sub_path,
|
1223 |
+
trimpa_sub_path=None,
|
1224 |
+
target_size=1024,
|
1225 |
+
multi_fg=None,
|
1226 |
+
):
|
1227 |
+
self.data_type = data_type
|
1228 |
+
self.data_dir = data_dir
|
1229 |
+
|
1230 |
+
self.image_paths = sorted(glob.glob(os.path.join(*[data_dir, image_sub_path])))
|
1231 |
+
self.alpha_paths = sorted(glob.glob(os.path.join(*[data_dir, alpha_sub_path])))
|
1232 |
+
self.trimpa_paths = sorted(glob.glob(os.path.join(*[data_dir, trimpa_sub_path]))) if trimpa_sub_path is not None else None
|
1233 |
+
|
1234 |
+
self.name_to_idx = dict()
|
1235 |
+
for idx, file_name in enumerate(self.image_paths):
|
1236 |
+
self.name_to_idx[file_name.split('/')[-1].split('.')[0]] = idx
|
1237 |
+
|
1238 |
+
test_trans = [
|
1239 |
+
Cv2ResziePad(target_size=target_size),
|
1240 |
+
GenBBox(bbox_offset_factor=0)
|
1241 |
+
]
|
1242 |
+
self.transform = transforms.Compose(test_trans)
|
1243 |
+
self.multi_fg = multi_fg
|
1244 |
+
|
1245 |
+
def __len__(self): # 1000
|
1246 |
+
return len(self.image_paths)
|
1247 |
+
|
1248 |
+
def __getitem__(self, idx):
|
1249 |
+
|
1250 |
+
img = cv2.imread(self.image_paths[idx])
|
1251 |
+
sample = {
|
1252 |
+
'image': img.astype(np.float32) / 255,
|
1253 |
+
'alpha': cv2.imread(self.alpha_paths[idx], 0).astype(np.float32) / 255,
|
1254 |
+
'trimap': cv2.imread(self.trimpa_paths[idx], 0) if self.trimpa_paths is not None else None,
|
1255 |
+
'ori_h_w': (img.shape[0], img.shape[1]),
|
1256 |
+
'data_type': self.data_type,
|
1257 |
+
'image_name': self.data_type + '_' + self.image_paths[idx].split('/')[-1]
|
1258 |
+
}
|
1259 |
+
|
1260 |
+
sample = self.transform(sample)
|
1261 |
+
if self.trimpa_paths is not None:
|
1262 |
+
sample['trimap'][sample['trimap'] < 85] = 0
|
1263 |
+
sample['trimap'][sample['trimap'] >= 170] = 1
|
1264 |
+
sample['trimap'][sample['trimap'] >= 85] = 0.5
|
1265 |
+
else:
|
1266 |
+
del sample['trimap']
|
1267 |
+
|
1268 |
+
if self.multi_fg is not None:
|
1269 |
+
sample['multi_fg'] = torch.tensor(self.multi_fg)
|
1270 |
+
|
1271 |
+
return sample
|
1272 |
+
|
1273 |
+
|
1274 |
+
def adobe_composition_collate_fn(batch):
|
1275 |
+
new_batch = defaultdict(list)
|
1276 |
+
for sub_batch in batch:
|
1277 |
+
for key in sub_batch.keys():
|
1278 |
+
new_batch[key].append(sub_batch[key])
|
1279 |
+
for key in new_batch:
|
1280 |
+
if isinstance(new_batch[key][0], torch.Tensor):
|
1281 |
+
new_batch[key] = torch.stack(new_batch[key])
|
1282 |
+
return dict(new_batch)
|
1283 |
+
|
1284 |
+
|
1285 |
+
def build_d2_test_dataloader(
|
1286 |
+
dataset,
|
1287 |
+
mapper=None,
|
1288 |
+
total_batch_size=None,
|
1289 |
+
local_batch_size=None,
|
1290 |
+
num_workers=0,
|
1291 |
+
collate_fn=None
|
1292 |
+
):
|
1293 |
+
|
1294 |
+
assert (total_batch_size is None) != (
|
1295 |
+
local_batch_size is None
|
1296 |
+
), "Either total_batch_size or local_batch_size must be specified"
|
1297 |
+
|
1298 |
+
world_size = comm.get_world_size()
|
1299 |
+
|
1300 |
+
if total_batch_size is not None:
|
1301 |
+
assert (
|
1302 |
+
total_batch_size > 0 and total_batch_size % world_size == 0
|
1303 |
+
), "Total batch size ({}) must be divisible by the number of gpus ({}).".format(
|
1304 |
+
total_batch_size, world_size
|
1305 |
+
)
|
1306 |
+
batch_size = total_batch_size // world_size
|
1307 |
+
|
1308 |
+
if local_batch_size is not None:
|
1309 |
+
batch_size = local_batch_size
|
1310 |
+
|
1311 |
+
logger = logging.getLogger(__name__)
|
1312 |
+
if batch_size != 1:
|
1313 |
+
logger.warning(
|
1314 |
+
"When testing, batch size is set to 1. "
|
1315 |
+
"This is the only mode that is supported for d2."
|
1316 |
+
)
|
1317 |
+
|
1318 |
+
return build_detection_test_loader(
|
1319 |
+
dataset=dataset,
|
1320 |
+
mapper=mapper,
|
1321 |
+
sampler=None,
|
1322 |
+
num_workers=num_workers,
|
1323 |
+
collate_fn=collate_fn,
|
1324 |
+
)
|
1325 |
+
|
1326 |
+
|
1327 |
+
class AdobeCompositionEvaluator(DatasetEvaluator):
|
1328 |
+
|
1329 |
+
def __init__(
|
1330 |
+
self,
|
1331 |
+
save_eval_results_step=-1,
|
1332 |
+
output_dir=None,
|
1333 |
+
eval_dataset_type=['Adobe'],
|
1334 |
+
distributed=True,
|
1335 |
+
eval_w_sam_hq_mask = False,
|
1336 |
+
):
|
1337 |
+
|
1338 |
+
self.save_eval_results_step = save_eval_results_step
|
1339 |
+
self.output_dir = output_dir
|
1340 |
+
self.eval_index = 0
|
1341 |
+
self.eval_dataset_type = eval_dataset_type
|
1342 |
+
self.eval_w_sam_hq_mask = eval_w_sam_hq_mask
|
1343 |
+
|
1344 |
+
self._distributed = distributed
|
1345 |
+
self._logger = logging.getLogger(__name__)
|
1346 |
+
|
1347 |
+
def reset(self):
|
1348 |
+
self.eval_metric = dict()
|
1349 |
+
for i in self.eval_dataset_type:
|
1350 |
+
self.eval_metric[i + '_MSE'] = []
|
1351 |
+
self.eval_metric[i + '_SAD'] = []
|
1352 |
+
self.eval_metric[i + '_MAD'] = []
|
1353 |
+
self.eval_metric[i + '_Grad'] = []
|
1354 |
+
self.eval_metric[i + '_Conn'] = []
|
1355 |
+
|
1356 |
+
os.makedirs(self.output_dir, exist_ok=True) if self.output_dir is not None else None
|
1357 |
+
|
1358 |
+
def process(self, inputs, outputs):
|
1359 |
+
"""
|
1360 |
+
Args:
|
1361 |
+
inputs: {'alpha', 'trimap', 'image', 'bbox', 'image_name'}
|
1362 |
+
outputs: [1, 1, H, W] 0. ~ 1.
|
1363 |
+
"""
|
1364 |
+
|
1365 |
+
# crop the black pad area
|
1366 |
+
assert inputs['image'].shape[-1] == inputs['image'].shape[-2] == 1024 and len(inputs['ori_h_w']) == 1
|
1367 |
+
inputs['ori_h_w'] = inputs['ori_h_w'][0]
|
1368 |
+
before_pad_h, before_pad_w = int(1024 / max(inputs['ori_h_w']) * inputs['ori_h_w'][0] + 0.5), int(1024 / max(inputs['ori_h_w']) * inputs['ori_h_w'][1] + 0.5)
|
1369 |
+
inputs['image'] = inputs['image'][:, :, :before_pad_h, :before_pad_w]
|
1370 |
+
inputs['alpha'] = inputs['alpha'][:, :, :before_pad_h, :before_pad_w]
|
1371 |
+
|
1372 |
+
if self.eval_w_sam_hq_mask:
|
1373 |
+
outputs, samhq_low_res_masks = outputs[0][:, :, :before_pad_h, :before_pad_w], outputs[1][:, :, :before_pad_h, :before_pad_w]
|
1374 |
+
pred_alpha, label_alpha, samhq_low_res_masks = outputs.cpu().numpy(), inputs['alpha'].numpy(), (samhq_low_res_masks > 0).float().cpu()
|
1375 |
+
else:
|
1376 |
+
outputs = outputs[:, :, :before_pad_h, :before_pad_w]
|
1377 |
+
pred_alpha, label_alpha = outputs.cpu().numpy(), inputs['alpha'].numpy()
|
1378 |
+
|
1379 |
+
# if 'trimap' in inputs.keys():
|
1380 |
+
# inputs['trimap'] = inputs['trimap'][:, :, :before_pad_h, :before_pad_w]
|
1381 |
+
# trimap = inputs['trimap'].numpy()
|
1382 |
+
# assert np.max(trimap) <= 1 and len(np.unique(trimap)) <= 3
|
1383 |
+
# sad_loss_unknown = compute_sad_loss(pred_alpha, label_alpha, trimap, area='unknown')
|
1384 |
+
# mse_loss_unknown = compute_mse_loss(pred_alpha, label_alpha, trimap, area='unknown')
|
1385 |
+
|
1386 |
+
# self.eval_metric[inputs['data_type'][0] + '_unknown_mse (1e-3)'].append(mse_loss_unknown)
|
1387 |
+
# self.eval_metric[inputs['data_type'][0] + '_unknown_sad (1e3)'].append(sad_loss_unknown)
|
1388 |
+
|
1389 |
+
# calculate loss
|
1390 |
+
assert np.max(pred_alpha) <= 1 and np.max(label_alpha) <= 1
|
1391 |
+
eval_pred = np.uint8(pred_alpha[0, 0] * 255.0 + 0.5) * 1.0
|
1392 |
+
eval_gt = label_alpha[0, 0] * 255.0
|
1393 |
+
|
1394 |
+
detailmap = np.zeros_like(eval_gt) + 128
|
1395 |
+
mse_loss_ = compute_mse_loss(eval_pred, eval_gt, detailmap)
|
1396 |
+
sad_loss_ = compute_sad_loss(eval_pred, eval_gt, detailmap)[0]
|
1397 |
+
mad_loss_ = compute_mad_loss(eval_pred, eval_gt, detailmap)
|
1398 |
+
grad_loss_ = compute_gradient_loss(eval_pred, eval_gt, detailmap)
|
1399 |
+
conn_loss_ = compute_connectivity_error(eval_pred, eval_gt, detailmap)
|
1400 |
+
|
1401 |
+
self.eval_metric[inputs['data_type'][0] + '_MSE'].append(mse_loss_)
|
1402 |
+
self.eval_metric[inputs['data_type'][0] + '_SAD'].append(sad_loss_)
|
1403 |
+
self.eval_metric[inputs['data_type'][0] + '_MAD'].append(mad_loss_)
|
1404 |
+
self.eval_metric[inputs['data_type'][0] + '_Grad'].append(grad_loss_)
|
1405 |
+
self.eval_metric[inputs['data_type'][0] + '_Conn'].append(conn_loss_)
|
1406 |
+
|
1407 |
+
# vis results
|
1408 |
+
if self.save_eval_results_step != -1 and self.eval_index % self.save_eval_results_step == 0:
|
1409 |
+
if self.eval_w_sam_hq_mask:
|
1410 |
+
self.save_vis_results(inputs, pred_alpha, samhq_low_res_masks)
|
1411 |
+
else:
|
1412 |
+
self.save_vis_results(inputs, pred_alpha)
|
1413 |
+
self.eval_index += 1
|
1414 |
+
|
1415 |
+
def save_vis_results(self, inputs, pred_alpha, samhq_low_res_masks=None):
|
1416 |
+
|
1417 |
+
# image
|
1418 |
+
image = inputs['image'][0].permute(1, 2, 0) * 255.0
|
1419 |
+
l, u, r, d = int(inputs['bbox'][0, 0, 0].item()), int(inputs['bbox'][0, 0, 1].item()), int(inputs['bbox'][0, 0, 2].item()), int(inputs['bbox'][0, 0, 3].item())
|
1420 |
+
red_line = torch.tensor([[255., 0., 0.]], device=image.device, dtype=image.dtype)
|
1421 |
+
image[u: d, l, :] = red_line
|
1422 |
+
image[u: d, r, :] = red_line
|
1423 |
+
image[u, l: r, :] = red_line
|
1424 |
+
image[d, l: r, :] = red_line
|
1425 |
+
image = np.uint8(image.numpy())
|
1426 |
+
|
1427 |
+
# trimap, pred_alpha, label_alpha
|
1428 |
+
save_results = [image]
|
1429 |
+
|
1430 |
+
choice = [inputs['trimap'], torch.from_numpy(pred_alpha), inputs['alpha']] if 'trimap' in inputs.keys() else [torch.from_numpy(pred_alpha), inputs['alpha']]
|
1431 |
+
for val in choice:
|
1432 |
+
val = val[0].permute(1, 2, 0).repeat(1, 1, 3) * 255.0 + 0.5 # +0.5 and int() = round()
|
1433 |
+
val = np.uint8(val.numpy())
|
1434 |
+
save_results.append(val)
|
1435 |
+
|
1436 |
+
if samhq_low_res_masks is not None:
|
1437 |
+
save_results.append(np.uint8(samhq_low_res_masks[0].permute(1, 2, 0).repeat(1, 1, 3).numpy() * 255.0))
|
1438 |
+
|
1439 |
+
save_results = np.concatenate(save_results, axis=1)
|
1440 |
+
save_name = os.path.join(self.output_dir, inputs['image_name'][0])
|
1441 |
+
Image.fromarray(save_results).save(save_name.replace('.jpg', '.png'))
|
1442 |
+
|
1443 |
+
def evaluate(self):
|
1444 |
+
|
1445 |
+
if self._distributed:
|
1446 |
+
comm.synchronize()
|
1447 |
+
eval_metric = comm.gather(self.eval_metric, dst=0)
|
1448 |
+
|
1449 |
+
if not comm.is_main_process():
|
1450 |
+
return {}
|
1451 |
+
|
1452 |
+
merges_eval_metric = defaultdict(list)
|
1453 |
+
for sub_eval_metric in eval_metric:
|
1454 |
+
for key, val in sub_eval_metric.items():
|
1455 |
+
merges_eval_metric[key] += val
|
1456 |
+
eval_metric = merges_eval_metric
|
1457 |
+
|
1458 |
+
else:
|
1459 |
+
eval_metric = self.eval_metric
|
1460 |
+
|
1461 |
+
eval_results = {}
|
1462 |
+
|
1463 |
+
for key, val in eval_metric.items():
|
1464 |
+
if len(val) != 0:
|
1465 |
+
# if 'mse' in key:
|
1466 |
+
# eval_results[key] = np.array(val).mean() * 1e3
|
1467 |
+
# else:
|
1468 |
+
# assert 'sad' in key
|
1469 |
+
# eval_results[key] = np.array(val).mean() / 1e3
|
1470 |
+
eval_results[key] = np.array(val).mean()
|
1471 |
+
|
1472 |
+
return eval_results
|
1473 |
+
|
1474 |
+
|
1475 |
+
if __name__ == '__main__':
|
1476 |
+
pass
|
data/evaluate.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import scipy.ndimage
|
2 |
+
import numpy as np
|
3 |
+
from skimage.measure import label
|
4 |
+
import scipy.ndimage.morphology
|
5 |
+
|
6 |
+
|
7 |
+
def gauss(x, sigma):
|
8 |
+
y = np.exp(-x ** 2 / (2 * sigma ** 2)) / (sigma * np.sqrt(2 * np.pi))
|
9 |
+
return y
|
10 |
+
|
11 |
+
|
12 |
+
def dgauss(x, sigma):
|
13 |
+
y = -x * gauss(x, sigma) / (sigma ** 2)
|
14 |
+
return y
|
15 |
+
|
16 |
+
|
17 |
+
def gaussgradient(im, sigma):
|
18 |
+
epsilon = 1e-2
|
19 |
+
halfsize = np.ceil(sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon))).astype(np.int32)
|
20 |
+
size = 2 * halfsize + 1
|
21 |
+
hx = np.zeros((size, size))
|
22 |
+
for i in range(0, size):
|
23 |
+
for j in range(0, size):
|
24 |
+
u = [i - halfsize, j - halfsize]
|
25 |
+
hx[i, j] = gauss(u[0], sigma) * dgauss(u[1], sigma)
|
26 |
+
|
27 |
+
hx = hx / np.sqrt(np.sum(np.abs(hx) * np.abs(hx)))
|
28 |
+
hy = hx.transpose()
|
29 |
+
|
30 |
+
gx = scipy.ndimage.convolve(im, hx, mode='nearest')
|
31 |
+
gy = scipy.ndimage.convolve(im, hy, mode='nearest')
|
32 |
+
|
33 |
+
return gx, gy
|
34 |
+
|
35 |
+
|
36 |
+
def compute_gradient_loss(pred, target, trimap):
|
37 |
+
|
38 |
+
pred = pred / 255.0
|
39 |
+
target = target / 255.0
|
40 |
+
|
41 |
+
pred_x, pred_y = gaussgradient(pred, 1.4)
|
42 |
+
target_x, target_y = gaussgradient(target, 1.4)
|
43 |
+
|
44 |
+
pred_amp = np.sqrt(pred_x ** 2 + pred_y ** 2)
|
45 |
+
target_amp = np.sqrt(target_x ** 2 + target_y ** 2)
|
46 |
+
|
47 |
+
error_map = (pred_amp - target_amp) ** 2
|
48 |
+
loss = np.sum(error_map[trimap == 128])
|
49 |
+
|
50 |
+
return loss / 1000.
|
51 |
+
|
52 |
+
|
53 |
+
def getLargestCC(segmentation):
|
54 |
+
labels = label(segmentation, connectivity=1)
|
55 |
+
largestCC = labels == np.argmax(np.bincount(labels.flat))
|
56 |
+
return largestCC
|
57 |
+
|
58 |
+
|
59 |
+
def compute_connectivity_error(pred, target, trimap, step=0.1):
|
60 |
+
pred = pred / 255.0
|
61 |
+
target = target / 255.0
|
62 |
+
h, w = pred.shape
|
63 |
+
|
64 |
+
thresh_steps = list(np.arange(0, 1 + step, step))
|
65 |
+
l_map = np.ones_like(pred, dtype=np.float32) * -1
|
66 |
+
for i in range(1, len(thresh_steps)):
|
67 |
+
pred_alpha_thresh = (pred >= thresh_steps[i]).astype(np.int32)
|
68 |
+
target_alpha_thresh = (target >= thresh_steps[i]).astype(np.int32)
|
69 |
+
|
70 |
+
omega = getLargestCC(pred_alpha_thresh * target_alpha_thresh).astype(np.int32)
|
71 |
+
flag = ((l_map == -1) & (omega == 0)).astype(np.int32)
|
72 |
+
l_map[flag == 1] = thresh_steps[i - 1]
|
73 |
+
|
74 |
+
l_map[l_map == -1] = 1
|
75 |
+
|
76 |
+
pred_d = pred - l_map
|
77 |
+
target_d = target - l_map
|
78 |
+
pred_phi = 1 - pred_d * (pred_d >= 0.15).astype(np.int32)
|
79 |
+
target_phi = 1 - target_d * (target_d >= 0.15).astype(np.int32)
|
80 |
+
loss = np.sum(np.abs(pred_phi - target_phi)[trimap == 128])
|
81 |
+
|
82 |
+
return loss / 1000.
|
83 |
+
|
84 |
+
|
85 |
+
def compute_mse_loss(pred, target, trimap):
|
86 |
+
error_map = (pred - target) / 255.0
|
87 |
+
loss = np.sum((error_map ** 2) * (trimap == 128)) / (np.sum(trimap == 128) + 1e-8)
|
88 |
+
|
89 |
+
return loss
|
90 |
+
|
91 |
+
|
92 |
+
def compute_sad_loss(pred, target, trimap):
|
93 |
+
error_map = np.abs((pred - target) / 255.0)
|
94 |
+
loss = np.sum(error_map * (trimap == 128))
|
95 |
+
|
96 |
+
return loss / 1000, np.sum(trimap == 128) / 1000
|
97 |
+
|
98 |
+
def compute_mad_loss(pred, target, trimap):
|
99 |
+
error_map = np.abs((pred - target) / 255.0)
|
100 |
+
loss = np.sum(error_map * (trimap == 128)) / (np.sum(trimap == 128) + 1e-8)
|
101 |
+
|
102 |
+
return loss
|
data/p3m10k_dataset.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from torchvision import transforms
|
7 |
+
import math
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
class GenBBox(object):
|
12 |
+
def __init__(self, bbox_offset_factor = 0.1, random_crop_bbox = None, train_or_test = 'train', dataset_type = None, random_auto_matting=None):
|
13 |
+
self.bbox_offset_factor = bbox_offset_factor
|
14 |
+
self.random_crop_bbox = random_crop_bbox
|
15 |
+
self.train_or_test = train_or_test
|
16 |
+
self.dataset_type = dataset_type
|
17 |
+
self.random_auto_matting = random_auto_matting
|
18 |
+
|
19 |
+
def __call__(self, sample):
|
20 |
+
|
21 |
+
alpha = sample['alpha'] # [1, H, W] 0.0 ~ 1.0
|
22 |
+
indices = torch.nonzero(alpha[0], as_tuple=True)
|
23 |
+
|
24 |
+
if len(indices[0]) > 0:
|
25 |
+
|
26 |
+
min_x, min_y = torch.min(indices[1]), torch.min(indices[0])
|
27 |
+
max_x, max_y = torch.max(indices[1]), torch.max(indices[0])
|
28 |
+
|
29 |
+
if self.random_crop_bbox is not None and np.random.uniform(0, 1) < self.random_crop_bbox:
|
30 |
+
ori_h_w = (sample['alpha'].shape[-2], sample['alpha'].shape[-1])
|
31 |
+
sample['alpha'] = F.interpolate(sample['alpha'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='bilinear', align_corners=False)[0]
|
32 |
+
sample['image'] = F.interpolate(sample['image'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='bilinear', align_corners=False)[0]
|
33 |
+
sample['trimap'] = F.interpolate(sample['trimap'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='nearest')[0]
|
34 |
+
bbox = torch.tensor([[0, 0, ori_h_w[1] - 1, ori_h_w[0] - 1]])
|
35 |
+
|
36 |
+
elif self.bbox_offset_factor != 0:
|
37 |
+
bbox_w = max(1, max_x - min_x)
|
38 |
+
bbox_h = max(1, max_y - min_y)
|
39 |
+
offset_w = math.ceil(self.bbox_offset_factor * bbox_w)
|
40 |
+
offset_h = math.ceil(self.bbox_offset_factor * bbox_h)
|
41 |
+
|
42 |
+
min_x = max(0, min_x + np.random.randint(-offset_w, offset_w))
|
43 |
+
max_x = min(alpha.shape[2] - 1, max_x + np.random.randint(-offset_w, offset_w))
|
44 |
+
min_y = max(0, min_y + np.random.randint(-offset_h, offset_h))
|
45 |
+
max_y = min(alpha.shape[1] - 1, max_y + np.random.randint(-offset_h, offset_h))
|
46 |
+
bbox = torch.tensor([[min_x, min_y, max_x, max_y]])
|
47 |
+
else:
|
48 |
+
bbox = torch.tensor([[min_x, min_y, max_x, max_y]])
|
49 |
+
|
50 |
+
if self.random_auto_matting is not None and np.random.uniform(0, 1) < self.random_auto_matting:
|
51 |
+
bbox = torch.tensor([[0, 0, alpha.shape[2] - 1, alpha.shape[1] - 1]])
|
52 |
+
|
53 |
+
else:
|
54 |
+
bbox = torch.zeros(1, 4)
|
55 |
+
|
56 |
+
sample['bbox'] = bbox.float()
|
57 |
+
return sample
|
58 |
+
|
59 |
+
def random_interp():
|
60 |
+
return np.random.choice([cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4])
|
61 |
+
|
62 |
+
|
63 |
+
class SplitConcatImage(object):
|
64 |
+
|
65 |
+
def __init__(self, concat_num=4, wo_mask_to_mattes=False):
|
66 |
+
self.concat_num = concat_num
|
67 |
+
self.wo_mask_to_mattes = wo_mask_to_mattes
|
68 |
+
if self.wo_mask_to_mattes:
|
69 |
+
assert self.concat_num == 5
|
70 |
+
|
71 |
+
def __call__(self, concat_image):
|
72 |
+
if isinstance(concat_image, list):
|
73 |
+
concat_image, image_path = concat_image[0], concat_image[1]
|
74 |
+
else:
|
75 |
+
image_path = None
|
76 |
+
H, W, _ = concat_image.shape
|
77 |
+
|
78 |
+
concat_num = self.concat_num
|
79 |
+
if image_path is not None:
|
80 |
+
if '06-14' in image_path:
|
81 |
+
concat_num = 4
|
82 |
+
elif 'ori_mask' in image_path or 'SEMat' in image_path:
|
83 |
+
concat_num = 3
|
84 |
+
else:
|
85 |
+
concat_num = 5
|
86 |
+
|
87 |
+
assert W % concat_num == 0
|
88 |
+
W = W // concat_num
|
89 |
+
|
90 |
+
image = concat_image[:H, :W]
|
91 |
+
if self.concat_num != 3:
|
92 |
+
trimap = concat_image[:H, (concat_num - 2) * W: (concat_num - 1) * W]
|
93 |
+
if self.wo_mask_to_mattes:
|
94 |
+
alpha = concat_image[:H, 2 * W: 3 * W]
|
95 |
+
else:
|
96 |
+
alpha = concat_image[:H, (concat_num - 1) * W: concat_num * W]
|
97 |
+
else:
|
98 |
+
trimap = concat_image[:H, (concat_num - 1) * W: concat_num * W]
|
99 |
+
alpha = concat_image[:H, (concat_num - 2) * W: (concat_num - 1) * W]
|
100 |
+
|
101 |
+
return {'image': image, 'trimap': trimap, 'alpha': alpha}
|
102 |
+
|
103 |
+
|
104 |
+
class RandomHorizontalFlip(object):
|
105 |
+
|
106 |
+
def __init__(self, prob=0.5):
|
107 |
+
self.prob = prob
|
108 |
+
|
109 |
+
def __call__(self, sample):
|
110 |
+
if np.random.uniform(0, 1) < self.prob:
|
111 |
+
for key in sample.keys():
|
112 |
+
sample[key] = cv2.flip(sample[key], 1)
|
113 |
+
return sample
|
114 |
+
|
115 |
+
class EmptyAug(object):
|
116 |
+
def __call__(self, sample):
|
117 |
+
return sample
|
118 |
+
|
119 |
+
class RandomReszieCrop(object):
|
120 |
+
|
121 |
+
def __init__(self, output_size=1024, aug_scale_min=0.5, aug_scale_max=1.5):
|
122 |
+
self.desired_size = output_size
|
123 |
+
self.aug_scale_min = aug_scale_min
|
124 |
+
self.aug_scale_max = aug_scale_max
|
125 |
+
|
126 |
+
def __call__(self, sample):
|
127 |
+
H, W, _ = sample['image'].shape
|
128 |
+
sample['trimap'] = sample['trimap'][:, :, None].repeat(3, axis=-1)
|
129 |
+
sample['alpha'] = sample['alpha'][:, :, None].repeat(3, axis=-1)
|
130 |
+
|
131 |
+
if self.aug_scale_min == 1.0 and self.aug_scale_max == 1.0:
|
132 |
+
crop_H, crop_W = H, W
|
133 |
+
crop_y1, crop_y2 = 0, crop_H
|
134 |
+
crop_x1, crop_x2 = 0, crop_W
|
135 |
+
scale_W, scaled_H = W, H
|
136 |
+
elif self.aug_scale_min == -1.0 and self.aug_scale_max == -1.0:
|
137 |
+
scale = min(self.desired_size / H, self.desired_size / W)
|
138 |
+
scaled_H, scale_W = round(H * scale), round(W * scale)
|
139 |
+
crop_H, crop_W = scaled_H, scale_W
|
140 |
+
crop_y1, crop_y2 = 0, crop_H
|
141 |
+
crop_x1, crop_x2 = 0, crop_W
|
142 |
+
else:
|
143 |
+
# random size
|
144 |
+
random_scale = np.random.uniform(0, 1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min # random_val: 0.5 ~ 1.5
|
145 |
+
scaled_size = round(random_scale * self.desired_size)
|
146 |
+
|
147 |
+
scale = min(scaled_size / H, scaled_size / W)
|
148 |
+
scaled_H, scale_W = round(H * scale), round(W * scale)
|
149 |
+
|
150 |
+
# random crop
|
151 |
+
crop_H, crop_W = min(self.desired_size, scaled_H), min(self.desired_size, scale_W) # crop_size
|
152 |
+
margin_H, margin_W = max(scaled_H - crop_H, 0), max(scale_W - crop_W, 0)
|
153 |
+
offset_H, offset_W = np.random.randint(0, margin_H + 1), np.random.randint(0, margin_W + 1)
|
154 |
+
crop_y1, crop_y2 = offset_H, offset_H + crop_H
|
155 |
+
crop_x1, crop_x2 = offset_W, offset_W + crop_W
|
156 |
+
|
157 |
+
for key in sample.keys():
|
158 |
+
sample[key] = cv2.resize(sample[key], (scale_W, scaled_H), interpolation=random_interp())[crop_y1: crop_y2, crop_x1: crop_x2, :] # resize and crop
|
159 |
+
padding = np.zeros(shape=(self.desired_size, self.desired_size, 3), dtype=sample[key].dtype) # pad to desired_size
|
160 |
+
padding[: crop_H, : crop_W, :] = sample[key]
|
161 |
+
sample[key] = padding
|
162 |
+
|
163 |
+
return sample
|
164 |
+
|
165 |
+
|
166 |
+
class RandomJitter(object):
|
167 |
+
"""
|
168 |
+
Random change the hue of the image
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __call__(self, sample):
|
172 |
+
|
173 |
+
image = sample['image']
|
174 |
+
|
175 |
+
# convert to HSV space, convert to float32 image to keep precision during space conversion.
|
176 |
+
image = cv2.cvtColor(image.astype(np.float32)/255.0, cv2.COLOR_BGR2HSV)
|
177 |
+
# Hue noise
|
178 |
+
hue_jitter = np.random.randint(-40, 40)
|
179 |
+
image[:, :, 0] = np.remainder(image[:, :, 0].astype(np.float32) + hue_jitter, 360)
|
180 |
+
# Saturation noise
|
181 |
+
sat_bar = image[:, :, 1].mean()
|
182 |
+
|
183 |
+
sat_jitter = np.random.rand()*(1.1 - sat_bar)/5 - (1.1 - sat_bar) / 10
|
184 |
+
sat = image[:, :, 1]
|
185 |
+
sat = np.abs(sat + sat_jitter)
|
186 |
+
sat[sat>1] = 2 - sat[sat>1]
|
187 |
+
image[:, :, 1] = sat
|
188 |
+
# Value noise
|
189 |
+
val_bar = image[:, :, 2].mean()
|
190 |
+
|
191 |
+
val_jitter = np.random.rand()*(1.1 - val_bar)/5-(1.1 - val_bar) / 10
|
192 |
+
val = image[:, :, 2]
|
193 |
+
val = np.abs(val + val_jitter)
|
194 |
+
val[val>1] = 2 - val[val>1]
|
195 |
+
image[:, :, 2] = val
|
196 |
+
# convert back to BGR space
|
197 |
+
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
|
198 |
+
sample['image'] = image * 255
|
199 |
+
|
200 |
+
return sample
|
201 |
+
|
202 |
+
|
203 |
+
class ToTensor(object):
|
204 |
+
|
205 |
+
def __call__(self, sample):
|
206 |
+
image, alpha, trimap = sample['image'][:, :, ::-1], sample['alpha'], sample['trimap']
|
207 |
+
|
208 |
+
# image
|
209 |
+
image = image.transpose((2, 0, 1)) / 255.
|
210 |
+
sample['image'] = torch.from_numpy(image).float()
|
211 |
+
|
212 |
+
# alpha
|
213 |
+
alpha = alpha.transpose((2, 0, 1))[0: 1] / 255.
|
214 |
+
alpha[alpha < 0 ] = 0
|
215 |
+
alpha[alpha > 1] = 1
|
216 |
+
sample['alpha'] = torch.from_numpy(alpha).float()
|
217 |
+
|
218 |
+
# trimap
|
219 |
+
trimap = trimap.transpose((2, 0, 1))[0: 1] / 1.
|
220 |
+
sample['trimap'] = torch.from_numpy(trimap).float()
|
221 |
+
sample['trimap'][sample['trimap'] < 85] = 0
|
222 |
+
sample['trimap'][sample['trimap'] >= 170] = 1
|
223 |
+
sample['trimap'][sample['trimap'] >= 85] = 0.5
|
224 |
+
|
225 |
+
return sample
|
226 |
+
|
227 |
+
|
228 |
+
class GenTrimap(object):
|
229 |
+
def __init__(self):
|
230 |
+
self.erosion_kernels = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,100)]
|
231 |
+
|
232 |
+
def __call__(self, sample):
|
233 |
+
alpha = sample['alpha']
|
234 |
+
h, w = alpha.shape
|
235 |
+
|
236 |
+
max_kernel_size = max(30, int((min(h,w) / 2048) * 30))
|
237 |
+
|
238 |
+
### generate trimap
|
239 |
+
fg_mask = (alpha / 255.0 + 1e-5).astype(np.int32).astype(np.uint8)
|
240 |
+
bg_mask = (1 - alpha / 255.0 + 1e-5).astype(np.int32).astype(np.uint8)
|
241 |
+
fg_mask = cv2.erode(fg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
242 |
+
bg_mask = cv2.erode(bg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
243 |
+
|
244 |
+
trimap = np.ones_like(alpha) * 128
|
245 |
+
trimap[fg_mask == 1] = 255
|
246 |
+
trimap[bg_mask == 1] = 0
|
247 |
+
|
248 |
+
trimap = cv2.resize(trimap, (w,h), interpolation=cv2.INTER_NEAREST)
|
249 |
+
sample['trimap'] = trimap
|
250 |
+
|
251 |
+
return sample
|
252 |
+
|
253 |
+
|
254 |
+
class P3MData(Dataset):
|
255 |
+
def __init__(
|
256 |
+
self,
|
257 |
+
data_root_path = '/root/data/my_path_b/public_data/data/matting/P3M-10k/train/blurred_image/',
|
258 |
+
output_size = 1024,
|
259 |
+
aug_scale_min = 0.8,
|
260 |
+
aug_scale_max = 1.5,
|
261 |
+
with_bbox = True,
|
262 |
+
bbox_offset_factor = 0.05,
|
263 |
+
num_ratio = 4.06, # 9421 * 4.06 = 38249.26 (38251)
|
264 |
+
):
|
265 |
+
|
266 |
+
self.data_root_path = data_root_path
|
267 |
+
self.output_size = output_size
|
268 |
+
self.aug_scale_min = aug_scale_min
|
269 |
+
self.aug_scale_max = aug_scale_max
|
270 |
+
self.with_bbox = with_bbox
|
271 |
+
self.bbox_offset_factor = bbox_offset_factor
|
272 |
+
self.num_ratio = num_ratio
|
273 |
+
|
274 |
+
self.image_names = os.listdir(self.data_root_path)
|
275 |
+
self.image_names = [i for i in self.image_names if 'jpg' in i]
|
276 |
+
self.image_names.sort()
|
277 |
+
|
278 |
+
train_trans = [
|
279 |
+
RandomHorizontalFlip(prob=0 if hasattr(self, 'return_image_name') and self.return_image_name else 0.5),
|
280 |
+
GenTrimap(),
|
281 |
+
RandomReszieCrop(self.output_size, self.aug_scale_min, self.aug_scale_max),
|
282 |
+
RandomJitter(),
|
283 |
+
ToTensor(),
|
284 |
+
GenBBox(bbox_offset_factor=self.bbox_offset_factor)
|
285 |
+
]
|
286 |
+
self.transform = transforms.Compose(train_trans)
|
287 |
+
|
288 |
+
def __getitem__(self, idx):
|
289 |
+
|
290 |
+
if self.num_ratio is not None:
|
291 |
+
if self.num_ratio < 1.0:
|
292 |
+
idx = np.random.randint(0, len(self.image_names))
|
293 |
+
else:
|
294 |
+
idx = idx % len(self.image_names)
|
295 |
+
|
296 |
+
image_path = os.path.join(self.data_root_path, self.image_names[idx])
|
297 |
+
alpha_path = image_path.replace('jpg', 'png').replace('blurred_image', 'mask')
|
298 |
+
|
299 |
+
sample = self.transform({
|
300 |
+
'image': cv2.imread(image_path),
|
301 |
+
'alpha': cv2.imread(alpha_path, 0),
|
302 |
+
})
|
303 |
+
|
304 |
+
sample['dataset_name'] = 'P3M'
|
305 |
+
sample['multi_fg'] = False
|
306 |
+
|
307 |
+
return sample
|
308 |
+
|
309 |
+
def __len__(self):
|
310 |
+
if self.num_ratio is not None:
|
311 |
+
return int(len(self.image_names) * self.num_ratio)
|
312 |
+
else:
|
313 |
+
return len(self.image_names)
|
314 |
+
|
315 |
+
|
316 |
+
if __name__ == '__main__':
|
317 |
+
|
318 |
+
dataset = P3MData()
|
319 |
+
data = dataset[0]
|
320 |
+
print(len(dataset))
|
321 |
+
for key, val in data.items():
|
322 |
+
if isinstance(val, torch.Tensor):
|
323 |
+
print(key, val.shape, torch.min(val), torch.max(val), torch.unique(val))
|
324 |
+
else:
|
325 |
+
print(key, val)
|
data/rand_augment.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copyright: https://github.com/ildoonet/pytorch-randaugment
|
2 |
+
# code in this file is adpated from rpmcruz/autoaugment
|
3 |
+
# https://github.com/rpmcruz/autoaugment/blob/master/transformations.py
|
4 |
+
# This code is modified version of one of ildoonet, for randaugmentation of fixmatch.
|
5 |
+
|
6 |
+
import random
|
7 |
+
|
8 |
+
import PIL, PIL.ImageOps, PIL.ImageEnhance, PIL.ImageDraw
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
|
15 |
+
def AutoContrast(img, _):
|
16 |
+
return PIL.ImageOps.autocontrast(img)
|
17 |
+
|
18 |
+
|
19 |
+
def Brightness(img, v):
|
20 |
+
assert v >= 0.0
|
21 |
+
return PIL.ImageEnhance.Brightness(img).enhance(v)
|
22 |
+
|
23 |
+
|
24 |
+
def Color(img, v):
|
25 |
+
assert v >= 0.0
|
26 |
+
return PIL.ImageEnhance.Color(img).enhance(v)
|
27 |
+
|
28 |
+
|
29 |
+
def Contrast(img, v):
|
30 |
+
assert v >= 0.0
|
31 |
+
return PIL.ImageEnhance.Contrast(img).enhance(v)
|
32 |
+
|
33 |
+
|
34 |
+
def Equalize(img, _):
|
35 |
+
return PIL.ImageOps.equalize(img)
|
36 |
+
|
37 |
+
|
38 |
+
def Invert(img, _):
|
39 |
+
return PIL.ImageOps.invert(img)
|
40 |
+
|
41 |
+
|
42 |
+
def Identity(img, v):
|
43 |
+
return img
|
44 |
+
|
45 |
+
|
46 |
+
def Posterize(img, v): # [4, 8]
|
47 |
+
v = int(v)
|
48 |
+
v = max(1, v)
|
49 |
+
return PIL.ImageOps.posterize(img, v)
|
50 |
+
|
51 |
+
|
52 |
+
def Rotate(img, v): # [-30, 30]
|
53 |
+
#assert -30 <= v <= 30
|
54 |
+
#if random.random() > 0.5:
|
55 |
+
# v = -v
|
56 |
+
return img.rotate(v)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def Sharpness(img, v): # [0.1,1.9]
|
61 |
+
assert v >= 0.0
|
62 |
+
return PIL.ImageEnhance.Sharpness(img).enhance(v)
|
63 |
+
|
64 |
+
|
65 |
+
def ShearX(img, v): # [-0.3, 0.3]
|
66 |
+
#assert -0.3 <= v <= 0.3
|
67 |
+
#if random.random() > 0.5:
|
68 |
+
# v = -v
|
69 |
+
return img.transform(img.size, PIL.Image.AFFINE, (1, v, 0, 0, 1, 0))
|
70 |
+
|
71 |
+
|
72 |
+
def ShearY(img, v): # [-0.3, 0.3]
|
73 |
+
#assert -0.3 <= v <= 0.3
|
74 |
+
#if random.random() > 0.5:
|
75 |
+
# v = -v
|
76 |
+
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0))
|
77 |
+
|
78 |
+
|
79 |
+
def TranslateX(img, v): # [-150, 150] => percentage: [-0.45, 0.45]
|
80 |
+
#assert -0.3 <= v <= 0.3
|
81 |
+
#if random.random() > 0.5:
|
82 |
+
# v = -v
|
83 |
+
v = v * img.size[0]
|
84 |
+
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0))
|
85 |
+
|
86 |
+
|
87 |
+
def TranslateXabs(img, v): # [-150, 150] => percentage: [-0.45, 0.45]
|
88 |
+
#assert v >= 0.0
|
89 |
+
#if random.random() > 0.5:
|
90 |
+
# v = -v
|
91 |
+
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0))
|
92 |
+
|
93 |
+
|
94 |
+
def TranslateY(img, v): # [-150, 150] => percentage: [-0.45, 0.45]
|
95 |
+
#assert -0.3 <= v <= 0.3
|
96 |
+
#if random.random() > 0.5:
|
97 |
+
# v = -v
|
98 |
+
v = v * img.size[1]
|
99 |
+
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v))
|
100 |
+
|
101 |
+
|
102 |
+
def TranslateYabs(img, v): # [-150, 150] => percentage: [-0.45, 0.45]
|
103 |
+
#assert 0 <= v
|
104 |
+
#if random.random() > 0.5:
|
105 |
+
# v = -v
|
106 |
+
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v))
|
107 |
+
|
108 |
+
|
109 |
+
def Solarize(img, v): # [0, 256]
|
110 |
+
assert 0 <= v <= 256
|
111 |
+
return PIL.ImageOps.solarize(img, v)
|
112 |
+
|
113 |
+
|
114 |
+
def Cutout(img, v): #[0, 60] => percentage: [0, 0.2] => change to [0, 0.5]
|
115 |
+
assert 0.0 <= v <= 0.5
|
116 |
+
if v <= 0.:
|
117 |
+
return img
|
118 |
+
|
119 |
+
v = v * img.size[0]
|
120 |
+
return CutoutAbs(img, v)
|
121 |
+
|
122 |
+
|
123 |
+
def CutoutAbs(img, v): # [0, 60] => percentage: [0, 0.2]
|
124 |
+
# assert 0 <= v <= 20
|
125 |
+
if v < 0:
|
126 |
+
return img
|
127 |
+
w, h = img.size
|
128 |
+
x0 = np.random.uniform(w)
|
129 |
+
y0 = np.random.uniform(h)
|
130 |
+
|
131 |
+
x0 = int(max(0, x0 - v / 2.))
|
132 |
+
y0 = int(max(0, y0 - v / 2.))
|
133 |
+
x1 = min(w, x0 + v)
|
134 |
+
y1 = min(h, y0 + v)
|
135 |
+
|
136 |
+
xy = (x0, y0, x1, y1)
|
137 |
+
color = (125, 123, 114)
|
138 |
+
# color = (0, 0, 0)
|
139 |
+
img = img.copy()
|
140 |
+
PIL.ImageDraw.Draw(img).rectangle(xy, color)
|
141 |
+
return img
|
142 |
+
|
143 |
+
|
144 |
+
def augment_list():
|
145 |
+
l = [
|
146 |
+
(AutoContrast, 0, 1),
|
147 |
+
(Brightness, 0.05, 0.95),
|
148 |
+
(Color, 0.05, 0.95),
|
149 |
+
(Contrast, 0.05, 0.95),
|
150 |
+
(Equalize, 0, 1),
|
151 |
+
(Identity, 0, 1),
|
152 |
+
(Posterize, 4, 8),
|
153 |
+
# (Rotate, -30, 30),
|
154 |
+
(Sharpness, 0.05, 0.95),
|
155 |
+
# (ShearX, -0.3, 0.3),
|
156 |
+
# (ShearY, -0.3, 0.3),
|
157 |
+
(Solarize, 0, 256),
|
158 |
+
# (TranslateX, -0.3, 0.3),
|
159 |
+
# (TranslateY, -0.3, 0.3)
|
160 |
+
]
|
161 |
+
return l
|
162 |
+
|
163 |
+
|
164 |
+
class RandAugment:
|
165 |
+
def __init__(self, n, m):
|
166 |
+
self.n = n
|
167 |
+
self.m = m # [0, 30] in fixmatch, deprecated.
|
168 |
+
self.augment_list = augment_list()
|
169 |
+
|
170 |
+
|
171 |
+
def __call__(self, img, cutout=True):
|
172 |
+
ops = random.choices(self.augment_list, k=self.n)
|
173 |
+
for op, min_val, max_val in ops:
|
174 |
+
val = min_val + float(max_val - min_val)*random.random()
|
175 |
+
img = op(img, val)
|
176 |
+
if cutout:
|
177 |
+
cutout_val = random.random() * 0.5
|
178 |
+
img = Cutout(img, cutout_val) #for fixmatch
|
179 |
+
return img
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == '__main__':
|
183 |
+
# randaug = RandAugment(3,5)
|
184 |
+
# print(randaug)
|
185 |
+
# for item in randaug.augment_list:
|
186 |
+
# print(item)
|
187 |
+
import os
|
188 |
+
|
189 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
190 |
+
img = PIL.Image.open('./u.jpg')
|
191 |
+
randaug = RandAugment(3,6)
|
192 |
+
img = randaug(img)
|
193 |
+
import matplotlib
|
194 |
+
from matplotlib import pyplot as plt
|
195 |
+
plt.imshow(img)
|
196 |
+
plt.show()
|
data/refmatte_dataset.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from torchvision import transforms
|
7 |
+
import random
|
8 |
+
import imgaug.augmenters as iaa
|
9 |
+
import numbers
|
10 |
+
import math
|
11 |
+
|
12 |
+
|
13 |
+
def random_interp():
|
14 |
+
return np.random.choice([cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4])
|
15 |
+
|
16 |
+
class RandomAffine(object):
|
17 |
+
"""
|
18 |
+
Random affine translation
|
19 |
+
"""
|
20 |
+
def __init__(self, degrees, translate=None, scale=None, shear=None, flip=None, resample=False, fillcolor=0):
|
21 |
+
if isinstance(degrees, numbers.Number):
|
22 |
+
if degrees < 0:
|
23 |
+
raise ValueError("If degrees is a single number, it must be positive.")
|
24 |
+
self.degrees = (-degrees, degrees)
|
25 |
+
else:
|
26 |
+
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
|
27 |
+
"degrees should be a list or tuple and it must be of length 2."
|
28 |
+
self.degrees = degrees
|
29 |
+
|
30 |
+
if translate is not None:
|
31 |
+
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
|
32 |
+
"translate should be a list or tuple and it must be of length 2."
|
33 |
+
for t in translate:
|
34 |
+
if not (0.0 <= t <= 1.0):
|
35 |
+
raise ValueError("translation values should be between 0 and 1")
|
36 |
+
self.translate = translate
|
37 |
+
|
38 |
+
if scale is not None:
|
39 |
+
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
|
40 |
+
"scale should be a list or tuple and it must be of length 2."
|
41 |
+
for s in scale:
|
42 |
+
if s <= 0:
|
43 |
+
raise ValueError("scale values should be positive")
|
44 |
+
self.scale = scale
|
45 |
+
|
46 |
+
if shear is not None:
|
47 |
+
if isinstance(shear, numbers.Number):
|
48 |
+
if shear < 0:
|
49 |
+
raise ValueError("If shear is a single number, it must be positive.")
|
50 |
+
self.shear = (-shear, shear)
|
51 |
+
else:
|
52 |
+
assert isinstance(shear, (tuple, list)) and len(shear) == 2, \
|
53 |
+
"shear should be a list or tuple and it must be of length 2."
|
54 |
+
self.shear = shear
|
55 |
+
else:
|
56 |
+
self.shear = shear
|
57 |
+
|
58 |
+
self.resample = resample
|
59 |
+
self.fillcolor = fillcolor
|
60 |
+
self.flip = flip
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def get_params(degrees, translate, scale_ranges, shears, flip, img_size):
|
64 |
+
"""Get parameters for affine transformation
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
sequence: params to be passed to the affine transformation
|
68 |
+
"""
|
69 |
+
angle = random.uniform(degrees[0], degrees[1])
|
70 |
+
if translate is not None:
|
71 |
+
max_dx = translate[0] * img_size[0]
|
72 |
+
max_dy = translate[1] * img_size[1]
|
73 |
+
translations = (np.round(random.uniform(-max_dx, max_dx)),
|
74 |
+
np.round(random.uniform(-max_dy, max_dy)))
|
75 |
+
else:
|
76 |
+
translations = (0, 0)
|
77 |
+
|
78 |
+
if scale_ranges is not None:
|
79 |
+
scale = (random.uniform(scale_ranges[0], scale_ranges[1]),
|
80 |
+
random.uniform(scale_ranges[0], scale_ranges[1]))
|
81 |
+
else:
|
82 |
+
scale = (1.0, 1.0)
|
83 |
+
|
84 |
+
if shears is not None:
|
85 |
+
shear = random.uniform(shears[0], shears[1])
|
86 |
+
else:
|
87 |
+
shear = 0.0
|
88 |
+
|
89 |
+
if flip is not None:
|
90 |
+
flip = (np.random.rand(2) < flip).astype(np.int32) * 2 - 1
|
91 |
+
|
92 |
+
return angle, translations, scale, shear, flip
|
93 |
+
|
94 |
+
def __call__(self, sample):
|
95 |
+
fg, alpha = sample['fg'], sample['alpha']
|
96 |
+
rows, cols, ch = fg.shape
|
97 |
+
if np.maximum(rows, cols) < 1024:
|
98 |
+
params = self.get_params((0, 0), self.translate, self.scale, self.shear, self.flip, fg.size)
|
99 |
+
else:
|
100 |
+
params = self.get_params(self.degrees, self.translate, self.scale, self.shear, self.flip, fg.size)
|
101 |
+
|
102 |
+
center = (cols * 0.5 + 0.5, rows * 0.5 + 0.5)
|
103 |
+
M = self._get_inverse_affine_matrix(center, *params)
|
104 |
+
M = np.array(M).reshape((2, 3))
|
105 |
+
|
106 |
+
fg = cv2.warpAffine(fg, M, (cols, rows), flags=random_interp() + cv2.WARP_INVERSE_MAP)
|
107 |
+
alpha = cv2.warpAffine(alpha, M, (cols, rows), flags=random_interp() + cv2.WARP_INVERSE_MAP)
|
108 |
+
|
109 |
+
sample['fg'], sample['alpha'] = fg, alpha
|
110 |
+
|
111 |
+
return sample
|
112 |
+
|
113 |
+
@ staticmethod
|
114 |
+
def _get_inverse_affine_matrix(center, angle, translate, scale, shear, flip):
|
115 |
+
# Helper method to compute inverse matrix for affine transformation
|
116 |
+
|
117 |
+
# As it is explained in PIL.Image.rotate
|
118 |
+
# We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
|
119 |
+
# where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
|
120 |
+
# C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
|
121 |
+
# RSS is rotation with scale and shear matrix
|
122 |
+
# It is different from the original function in torchvision
|
123 |
+
# The order are changed to flip -> scale -> rotation -> shear
|
124 |
+
# x and y have different scale factors
|
125 |
+
# RSS(shear, a, scale, f) = [ cos(a + shear)*scale_x*f -sin(a + shear)*scale_y 0]
|
126 |
+
# [ sin(a)*scale_x*f cos(a)*scale_y 0]
|
127 |
+
# [ 0 0 1]
|
128 |
+
# Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1
|
129 |
+
|
130 |
+
angle = math.radians(angle)
|
131 |
+
shear = math.radians(shear)
|
132 |
+
scale_x = 1.0 / scale[0] * flip[0]
|
133 |
+
scale_y = 1.0 / scale[1] * flip[1]
|
134 |
+
|
135 |
+
# Inverted rotation matrix with scale and shear
|
136 |
+
d = math.cos(angle + shear) * math.cos(angle) + math.sin(angle + shear) * math.sin(angle)
|
137 |
+
matrix = [
|
138 |
+
math.cos(angle) * scale_x, math.sin(angle + shear) * scale_x, 0,
|
139 |
+
-math.sin(angle) * scale_y, math.cos(angle + shear) * scale_y, 0
|
140 |
+
]
|
141 |
+
matrix = [m / d for m in matrix]
|
142 |
+
|
143 |
+
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
|
144 |
+
matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1])
|
145 |
+
matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1])
|
146 |
+
|
147 |
+
# Apply center translation: C * RSS^-1 * C^-1 * T^-1
|
148 |
+
matrix[2] += center[0]
|
149 |
+
matrix[5] += center[1]
|
150 |
+
|
151 |
+
return matrix
|
152 |
+
|
153 |
+
|
154 |
+
class GenTrimap(object):
|
155 |
+
def __init__(self):
|
156 |
+
self.erosion_kernels = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,100)]
|
157 |
+
|
158 |
+
def __call__(self, sample):
|
159 |
+
alpha = sample['alpha']
|
160 |
+
h, w = alpha.shape
|
161 |
+
|
162 |
+
max_kernel_size = max(30, int((min(h,w) / 2048) * 30))
|
163 |
+
|
164 |
+
### generate trimap
|
165 |
+
fg_mask = (alpha + 1e-5).astype(np.int32).astype(np.uint8)
|
166 |
+
bg_mask = (1 - alpha + 1e-5).astype(np.int32).astype(np.uint8)
|
167 |
+
fg_mask = cv2.erode(fg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
168 |
+
bg_mask = cv2.erode(bg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
|
169 |
+
|
170 |
+
trimap = np.ones_like(alpha) * 128
|
171 |
+
trimap[fg_mask == 1] = 255
|
172 |
+
trimap[bg_mask == 1] = 0
|
173 |
+
|
174 |
+
trimap = cv2.resize(trimap, (w,h), interpolation=cv2.INTER_NEAREST)
|
175 |
+
sample['trimap'] = trimap
|
176 |
+
|
177 |
+
return sample
|
178 |
+
|
179 |
+
|
180 |
+
class RandomCrop(object):
|
181 |
+
"""
|
182 |
+
Crop randomly the image in a sample, retain the center 1/4 images, and resize to 'output_size'
|
183 |
+
|
184 |
+
:param output_size (tuple or int): Desired output size. If int, square crop
|
185 |
+
is made.
|
186 |
+
"""
|
187 |
+
|
188 |
+
def __init__(self, output_size=(1024, 1024)):
|
189 |
+
assert isinstance(output_size, (int, tuple))
|
190 |
+
if isinstance(output_size, int):
|
191 |
+
self.output_size = (output_size, output_size)
|
192 |
+
else:
|
193 |
+
assert len(output_size) == 2
|
194 |
+
self.output_size = output_size
|
195 |
+
self.margin = output_size[0] // 2
|
196 |
+
|
197 |
+
def __call__(self, sample):
|
198 |
+
fg, alpha, trimap, name = sample['fg'], sample['alpha'], sample['trimap'], sample['image_name']
|
199 |
+
bg = sample['bg']
|
200 |
+
h, w = trimap.shape
|
201 |
+
bg = cv2.resize(bg, (w, h), interpolation=random_interp())
|
202 |
+
if w < self.output_size[0]+1 or h < self.output_size[1]+1:
|
203 |
+
ratio = 1.1*self.output_size[0]/h if h < w else 1.1*self.output_size[1]/w
|
204 |
+
# self.logger.warning("Size of {} is {}.".format(name, (h, w)))
|
205 |
+
while h < self.output_size[0]+1 or w < self.output_size[1]+1:
|
206 |
+
fg = cv2.resize(fg, (int(w*ratio), int(h*ratio)), interpolation=random_interp())
|
207 |
+
alpha = cv2.resize(alpha, (int(w*ratio), int(h*ratio)),
|
208 |
+
interpolation=random_interp())
|
209 |
+
trimap = cv2.resize(trimap, (int(w*ratio), int(h*ratio)), interpolation=cv2.INTER_NEAREST)
|
210 |
+
bg = cv2.resize(bg, (int(w*ratio), int(h*ratio)), interpolation=random_interp())
|
211 |
+
h, w = trimap.shape
|
212 |
+
small_trimap = cv2.resize(trimap, (w//4, h//4), interpolation=cv2.INTER_NEAREST)
|
213 |
+
unknown_list = list(zip(*np.where(small_trimap[self.margin//4:(h-self.margin)//4,
|
214 |
+
self.margin//4:(w-self.margin)//4] == 128)))
|
215 |
+
unknown_num = len(unknown_list)
|
216 |
+
if len(unknown_list) < 10:
|
217 |
+
left_top = (np.random.randint(0, h-self.output_size[0]+1), np.random.randint(0, w-self.output_size[1]+1))
|
218 |
+
else:
|
219 |
+
idx = np.random.randint(unknown_num)
|
220 |
+
left_top = (unknown_list[idx][0]*4, unknown_list[idx][1]*4)
|
221 |
+
|
222 |
+
fg_crop = fg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
|
223 |
+
alpha_crop = alpha[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
|
224 |
+
bg_crop = bg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
|
225 |
+
trimap_crop = trimap[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
|
226 |
+
|
227 |
+
if len(np.where(trimap==128)[0]) == 0:
|
228 |
+
fg_crop = cv2.resize(fg, self.output_size[::-1], interpolation=random_interp())
|
229 |
+
alpha_crop = cv2.resize(alpha, self.output_size[::-1], interpolation=random_interp())
|
230 |
+
trimap_crop = cv2.resize(trimap, self.output_size[::-1], interpolation=cv2.INTER_NEAREST)
|
231 |
+
bg_crop = cv2.resize(bg, self.output_size[::-1], interpolation=random_interp())
|
232 |
+
|
233 |
+
sample.update({'fg': fg_crop, 'alpha': alpha_crop, 'trimap': trimap_crop, 'bg': bg_crop})
|
234 |
+
return sample
|
235 |
+
|
236 |
+
|
237 |
+
class Composite_Seg(object):
|
238 |
+
def __call__(self, sample):
|
239 |
+
fg, bg, alpha = sample['fg'], sample['bg'], sample['alpha']
|
240 |
+
fg[fg < 0 ] = 0
|
241 |
+
fg[fg > 255] = 255
|
242 |
+
image = fg
|
243 |
+
sample['image'] = image
|
244 |
+
return sample
|
245 |
+
|
246 |
+
|
247 |
+
class ToTensor(object):
|
248 |
+
"""
|
249 |
+
Convert ndarrays in sample to Tensors with normalization.
|
250 |
+
"""
|
251 |
+
def __init__(self, phase="test", real_world_aug = False):
|
252 |
+
# self.mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)
|
253 |
+
# self.std = torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
|
254 |
+
self.mean = torch.tensor([0.0, 0.0, 0.0]).view(3,1,1)
|
255 |
+
self.std = torch.tensor([1.0, 1.0, 1.0]).view(3,1,1)
|
256 |
+
self.phase = phase
|
257 |
+
if real_world_aug:
|
258 |
+
self.RWA = iaa.SomeOf((1, None), [
|
259 |
+
iaa.LinearContrast((0.6, 1.4)),
|
260 |
+
iaa.JpegCompression(compression=(0, 60)),
|
261 |
+
iaa.GaussianBlur(sigma=(0.0, 3.0)),
|
262 |
+
iaa.AdditiveGaussianNoise(scale=(0, 0.1*255))
|
263 |
+
], random_order=True)
|
264 |
+
else:
|
265 |
+
self.RWA = None
|
266 |
+
|
267 |
+
def get_box_from_alpha(self, alpha_final):
|
268 |
+
bi_mask = np.zeros_like(alpha_final)
|
269 |
+
bi_mask[alpha_final>0.5] = 1
|
270 |
+
#bi_mask[alpha_final<=0.5] = 0
|
271 |
+
fg_set = np.where(bi_mask != 0)
|
272 |
+
if len(fg_set[1]) == 0 or len(fg_set[0]) == 0:
|
273 |
+
x_min = random.randint(1, 511)
|
274 |
+
x_max = random.randint(1, 511) + x_min
|
275 |
+
y_min = random.randint(1, 511)
|
276 |
+
y_max = random.randint(1, 511) + y_min
|
277 |
+
else:
|
278 |
+
x_min = np.min(fg_set[1])
|
279 |
+
x_max = np.max(fg_set[1])
|
280 |
+
y_min = np.min(fg_set[0])
|
281 |
+
y_max = np.max(fg_set[0])
|
282 |
+
bbox = np.array([x_min, y_min, x_max, y_max])
|
283 |
+
#cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0,255,0), 2)
|
284 |
+
#cv2.imwrite('../outputs/test.jpg', image)
|
285 |
+
#cv2.imwrite('../outputs/test_gt.jpg', alpha_single)
|
286 |
+
return bbox
|
287 |
+
|
288 |
+
def __call__(self, sample):
|
289 |
+
# convert GBR images to RGB
|
290 |
+
image, alpha, trimap = sample['image'][:,:,::-1], sample['alpha'], sample['trimap']
|
291 |
+
|
292 |
+
alpha[alpha < 0 ] = 0
|
293 |
+
alpha[alpha > 1] = 1
|
294 |
+
|
295 |
+
bbox = self.get_box_from_alpha(alpha)
|
296 |
+
|
297 |
+
if self.phase == 'train' and self.RWA is not None and np.random.rand() < 0.5:
|
298 |
+
image[image > 255] = 255
|
299 |
+
image[image < 0] = 0
|
300 |
+
image = np.round(image).astype(np.uint8)
|
301 |
+
image = np.expand_dims(image, axis=0)
|
302 |
+
image = self.RWA(images=image)
|
303 |
+
image = image[0, ...]
|
304 |
+
|
305 |
+
# swap color axis because
|
306 |
+
# numpy image: H x W x C
|
307 |
+
# torch image: C X H X W
|
308 |
+
image = image.transpose((2, 0, 1)).astype(np.float32)
|
309 |
+
alpha = np.expand_dims(alpha.astype(np.float32), axis=0)
|
310 |
+
trimap[trimap < 85] = 0
|
311 |
+
trimap[trimap >= 170] = 2
|
312 |
+
trimap[trimap >= 85] = 1
|
313 |
+
#image = cv2.rectangle(image, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (255,0,0), 3)
|
314 |
+
#cv2.imwrite(os.path.join('outputs', 'img_bbox.png'), image.astype('uint8'))
|
315 |
+
# normalize image
|
316 |
+
image /= 255.
|
317 |
+
|
318 |
+
if self.phase == "train":
|
319 |
+
# convert GBR images to RGB
|
320 |
+
fg = sample['fg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
|
321 |
+
sample['fg'] = torch.from_numpy(fg).sub_(self.mean).div_(self.std)
|
322 |
+
bg = sample['bg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
|
323 |
+
sample['bg'] = torch.from_numpy(bg).sub_(self.mean).div_(self.std)
|
324 |
+
del sample['image_name']
|
325 |
+
|
326 |
+
sample['boxes'] = torch.from_numpy(bbox).to(torch.float)[None,...]
|
327 |
+
|
328 |
+
sample['image'], sample['alpha'], sample['trimap'] = \
|
329 |
+
torch.from_numpy(image), torch.from_numpy(alpha), torch.from_numpy(trimap).to(torch.long)
|
330 |
+
sample['image'] = sample['image'].sub_(self.mean).div_(self.std)
|
331 |
+
sample['trimap'] = sample['trimap'][None,...].float()
|
332 |
+
|
333 |
+
return sample
|
334 |
+
|
335 |
+
|
336 |
+
class RefMatteData(Dataset):
|
337 |
+
def __init__(
|
338 |
+
self,
|
339 |
+
data_root_path,
|
340 |
+
num_ratio = 0.34,
|
341 |
+
):
|
342 |
+
self.data_root_path = data_root_path
|
343 |
+
self.num_ratio = num_ratio
|
344 |
+
|
345 |
+
self.rim_img = [os.path.join(data_root_path, name) for name in sorted(os.listdir(data_root_path))]
|
346 |
+
self.rim_pha = [os.path.join(data_root_path.replace('img', 'mask'), name) for name in sorted(os.listdir(data_root_path.replace('img', 'mask')))]
|
347 |
+
self.rim_num = len(self.rim_pha)
|
348 |
+
|
349 |
+
self.transform_spd = transforms.Compose([
|
350 |
+
RandomAffine(degrees=30, scale=[0.8, 1.5], shear=10, flip=0.5),
|
351 |
+
GenTrimap(),
|
352 |
+
RandomCrop((1024, 1024)),
|
353 |
+
Composite_Seg(),
|
354 |
+
ToTensor(phase="train", real_world_aug=False)
|
355 |
+
])
|
356 |
+
|
357 |
+
def __getitem__(self, idx):
|
358 |
+
if self.num_ratio is not None:
|
359 |
+
if self.num_ratio < 1.0 or idx >= self.rim_num:
|
360 |
+
idx = np.random.randint(0, self.rim_num)
|
361 |
+
alpha = cv2.imread(self.rim_pha[idx % self.rim_num], 0).astype(np.float32)/255
|
362 |
+
alpha_img_name = self.rim_pha[idx % self.rim_num].split('/')[-1]
|
363 |
+
fg_img_name = alpha_img_name[:-6] + '.jpg'
|
364 |
+
|
365 |
+
fg = cv2.imread(os.path.join(self.data_root_path, fg_img_name))
|
366 |
+
|
367 |
+
if np.random.rand() < 0.25:
|
368 |
+
fg = cv2.resize(fg, (1280, 1280), interpolation=random_interp())
|
369 |
+
alpha = cv2.resize(alpha, (1280, 1280), interpolation=random_interp())
|
370 |
+
|
371 |
+
image_name = alpha_img_name # os.path.split(self.rim_img[idx % self.rim_num])[-1]
|
372 |
+
sample = {'fg': fg, 'alpha': alpha, 'bg': fg, 'image_name': image_name}
|
373 |
+
sample = self.transform_spd(sample)
|
374 |
+
|
375 |
+
converted_sample = {
|
376 |
+
'image': sample['image'],
|
377 |
+
'trimap': sample['trimap'] / 2.0,
|
378 |
+
'alpha': sample['alpha'],
|
379 |
+
'bbox': sample['boxes'],
|
380 |
+
'dataset_name': 'RefMatte',
|
381 |
+
'multi_fg': False,
|
382 |
+
}
|
383 |
+
return converted_sample
|
384 |
+
|
385 |
+
def __len__(self):
|
386 |
+
if self.num_ratio is not None:
|
387 |
+
return int(self.rim_num * self.num_ratio) # 112506 * 0.34 = 38252 (COCONut_num-38251 + 1)
|
388 |
+
else:
|
389 |
+
return self.rim_num # 112506
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
if __name__ == '__main__':
|
394 |
+
dataset = RefMatteData(
|
395 |
+
data_root_path = '/data/my_path_b/public_data/data/matting/RefMatte/RefMatte/train/img',
|
396 |
+
num_ratio=0.34,
|
397 |
+
)
|
398 |
+
data = dataset[0]
|
399 |
+
'''
|
400 |
+
fg torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
|
401 |
+
alpha torch.Size([1, 1024, 1024]) tensor(0.) tensor(1.)
|
402 |
+
bg torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
|
403 |
+
trimap torch.Size([1, 1024, 1024]) 0.0 or 1.0 or 2.0
|
404 |
+
image torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
|
405 |
+
boxes torch.Size([1, 4]) tensor(72.) tensor(676.) 0.0~1024.0
|
406 |
+
|
407 |
+
COCONut:
|
408 |
+
image torch.Size([3, 1024, 1024]) tensor(0.0006) tensor(0.9991)
|
409 |
+
trimap torch.Size([1, 1024, 1024]) 0.0 or 0.5 or 1.0
|
410 |
+
alpha torch.Size([1, 1024, 1024]) tensor(0.) tensor(1.)
|
411 |
+
bbox torch.Size([1, 4]) tensor(0.) tensor(590.)
|
412 |
+
dataset_name: 'COCONut'
|
413 |
+
'''
|
414 |
+
for key, val in data.items():
|
415 |
+
if isinstance(val, torch.Tensor):
|
416 |
+
print(key, val.shape, torch.min(val), torch.max(val))
|
417 |
+
else:
|
418 |
+
print(key, val.shape)
|
engine/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .mattingtrainer import MattingTrainer
|
engine/hooks.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import detectron2.utils.comm as comm
|
3 |
+
from detectron2.engine import EvalHook as _EvalHook
|
4 |
+
from detectron2.evaluation.testing import flatten_results_dict
|
5 |
+
|
6 |
+
|
7 |
+
class EvalHook(_EvalHook):
|
8 |
+
def __init__(self, eval_period, eval_function):
|
9 |
+
super().__init__(eval_period, eval_function)
|
10 |
+
func_args = inspect.getfullargspec(eval_function).args
|
11 |
+
assert {"final_iter", "next_iter"}.issubset(set(func_args)), (
|
12 |
+
f"Eval function must have either 'final_iter' or 'next_iter' as an argument."
|
13 |
+
f"Got {func_args} instead."
|
14 |
+
)
|
15 |
+
|
16 |
+
def _do_eval(self, final_iter=False, next_iter=0):
|
17 |
+
results = self._func(final_iter=final_iter, next_iter=next_iter)
|
18 |
+
|
19 |
+
if results:
|
20 |
+
assert isinstance(
|
21 |
+
results, dict
|
22 |
+
), "Eval function must return a dict. Got {} instead.".format(results)
|
23 |
+
|
24 |
+
flattened_results = flatten_results_dict(results)
|
25 |
+
for k, v in flattened_results.items():
|
26 |
+
try:
|
27 |
+
v = float(v)
|
28 |
+
except Exception as e:
|
29 |
+
raise ValueError(
|
30 |
+
"[EvalHook] eval_function should return a nested dict of float. "
|
31 |
+
"Got '{}: {}' instead.".format(k, v)
|
32 |
+
) from e
|
33 |
+
self.trainer.storage.put_scalars(**flattened_results, smoothing_hint=False)
|
34 |
+
|
35 |
+
# Evaluation may take different time among workers.
|
36 |
+
# A barrier make them start the next iteration together.
|
37 |
+
comm.synchronize()
|
38 |
+
|
39 |
+
def after_step(self):
|
40 |
+
next_iter = self.trainer.iter + 1
|
41 |
+
if self._period > 0 and next_iter % self._period == 0:
|
42 |
+
# do the last eval in after_train
|
43 |
+
if next_iter != self.trainer.max_iter:
|
44 |
+
self._do_eval(next_iter=next_iter)
|
45 |
+
|
46 |
+
def after_train(self):
|
47 |
+
# This condition is to prevent the eval from running after a failed training
|
48 |
+
if self.trainer.iter + 1 >= self.trainer.max_iter:
|
49 |
+
self._do_eval(final_iter=True)
|
50 |
+
# func is likely a closure that holds reference to the trainer
|
51 |
+
# therefore we clean it to avoid circular reference in the end
|
52 |
+
del self._func
|
engine/mattingtrainer.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from detectron2.engine import AMPTrainer
|
2 |
+
import torch
|
3 |
+
import time
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logger = logging.getLogger("detectron2")
|
7 |
+
|
8 |
+
import typing
|
9 |
+
from collections import defaultdict
|
10 |
+
import tabulate
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
|
14 |
+
def parameter_count(model: nn.Module, trainable_only: bool = False) -> typing.DefaultDict[str, int]:
|
15 |
+
"""
|
16 |
+
Count parameters of a model and its submodules.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
model: a torch module
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
dict (str-> int): the key is either a parameter name or a module name.
|
23 |
+
The value is the number of elements in the parameter, or in all
|
24 |
+
parameters of the module. The key "" corresponds to the total
|
25 |
+
number of parameters of the model.
|
26 |
+
"""
|
27 |
+
r = defaultdict(int)
|
28 |
+
for name, prm in model.named_parameters():
|
29 |
+
if trainable_only:
|
30 |
+
if not prm.requires_grad:
|
31 |
+
continue
|
32 |
+
size = prm.numel()
|
33 |
+
name = name.split(".")
|
34 |
+
for k in range(0, len(name) + 1):
|
35 |
+
prefix = ".".join(name[:k])
|
36 |
+
r[prefix] += size
|
37 |
+
return r
|
38 |
+
|
39 |
+
|
40 |
+
def parameter_count_table(
|
41 |
+
model: nn.Module, max_depth: int = 3, trainable_only: bool = False
|
42 |
+
) -> str:
|
43 |
+
"""
|
44 |
+
Format the parameter count of the model (and its submodules or parameters)
|
45 |
+
in a nice table. It looks like this:
|
46 |
+
|
47 |
+
::
|
48 |
+
|
49 |
+
| name | #elements or shape |
|
50 |
+
|:--------------------------------|:---------------------|
|
51 |
+
| model | 37.9M |
|
52 |
+
| backbone | 31.5M |
|
53 |
+
| backbone.fpn_lateral3 | 0.1M |
|
54 |
+
| backbone.fpn_lateral3.weight | (256, 512, 1, 1) |
|
55 |
+
| backbone.fpn_lateral3.bias | (256,) |
|
56 |
+
| backbone.fpn_output3 | 0.6M |
|
57 |
+
| backbone.fpn_output3.weight | (256, 256, 3, 3) |
|
58 |
+
| backbone.fpn_output3.bias | (256,) |
|
59 |
+
| backbone.fpn_lateral4 | 0.3M |
|
60 |
+
| backbone.fpn_lateral4.weight | (256, 1024, 1, 1) |
|
61 |
+
| backbone.fpn_lateral4.bias | (256,) |
|
62 |
+
| backbone.fpn_output4 | 0.6M |
|
63 |
+
| backbone.fpn_output4.weight | (256, 256, 3, 3) |
|
64 |
+
| backbone.fpn_output4.bias | (256,) |
|
65 |
+
| backbone.fpn_lateral5 | 0.5M |
|
66 |
+
| backbone.fpn_lateral5.weight | (256, 2048, 1, 1) |
|
67 |
+
| backbone.fpn_lateral5.bias | (256,) |
|
68 |
+
| backbone.fpn_output5 | 0.6M |
|
69 |
+
| backbone.fpn_output5.weight | (256, 256, 3, 3) |
|
70 |
+
| backbone.fpn_output5.bias | (256,) |
|
71 |
+
| backbone.top_block | 5.3M |
|
72 |
+
| backbone.top_block.p6 | 4.7M |
|
73 |
+
| backbone.top_block.p7 | 0.6M |
|
74 |
+
| backbone.bottom_up | 23.5M |
|
75 |
+
| backbone.bottom_up.stem | 9.4K |
|
76 |
+
| backbone.bottom_up.res2 | 0.2M |
|
77 |
+
| backbone.bottom_up.res3 | 1.2M |
|
78 |
+
| backbone.bottom_up.res4 | 7.1M |
|
79 |
+
| backbone.bottom_up.res5 | 14.9M |
|
80 |
+
| ...... | ..... |
|
81 |
+
|
82 |
+
Args:
|
83 |
+
model: a torch module
|
84 |
+
max_depth (int): maximum depth to recursively print submodules or
|
85 |
+
parameters
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
str: the table to be printed
|
89 |
+
"""
|
90 |
+
count: typing.DefaultDict[str, int] = parameter_count(model, trainable_only)
|
91 |
+
# pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter.
|
92 |
+
param_shape: typing.Dict[str, typing.Tuple] = {
|
93 |
+
k: tuple(v.shape) for k, v in model.named_parameters()
|
94 |
+
}
|
95 |
+
|
96 |
+
# pyre-fixme[24]: Generic type `tuple` expects at least 1 type parameter.
|
97 |
+
table: typing.List[typing.Tuple] = []
|
98 |
+
|
99 |
+
def format_size(x: int) -> str:
|
100 |
+
if x > 1e8:
|
101 |
+
return "{:.1f}G".format(x / 1e9)
|
102 |
+
if x > 1e5:
|
103 |
+
return "{:.1f}M".format(x / 1e6)
|
104 |
+
if x > 1e2:
|
105 |
+
return "{:.1f}K".format(x / 1e3)
|
106 |
+
return str(x)
|
107 |
+
|
108 |
+
def fill(lvl: int, prefix: str) -> None:
|
109 |
+
if lvl >= max_depth:
|
110 |
+
return
|
111 |
+
for name, v in count.items():
|
112 |
+
if name.count(".") == lvl and name.startswith(prefix):
|
113 |
+
indent = " " * (lvl + 1)
|
114 |
+
if name in param_shape:
|
115 |
+
table.append((indent + name, indent + str(param_shape[name])))
|
116 |
+
else:
|
117 |
+
table.append((indent + name, indent + format_size(v)))
|
118 |
+
fill(lvl + 1, name + ".")
|
119 |
+
|
120 |
+
table.append(("model", format_size(count.pop(""))))
|
121 |
+
fill(0, "")
|
122 |
+
|
123 |
+
old_ws = tabulate.PRESERVE_WHITESPACE
|
124 |
+
tabulate.PRESERVE_WHITESPACE = True
|
125 |
+
tab = tabulate.tabulate(table, headers=["name", "#elements or shape"], tablefmt="pipe")
|
126 |
+
tabulate.PRESERVE_WHITESPACE = old_ws
|
127 |
+
return tab
|
128 |
+
|
129 |
+
|
130 |
+
def cycle(iterable):
|
131 |
+
while True:
|
132 |
+
for x in iterable:
|
133 |
+
yield x
|
134 |
+
|
135 |
+
class MattingTrainer(AMPTrainer):
|
136 |
+
def __init__(self, model, data_loader, optimizer, grad_scaler=None):
|
137 |
+
super().__init__(model, data_loader, optimizer, grad_scaler=None)
|
138 |
+
self.data_loader_iter = iter(cycle(self.data_loader))
|
139 |
+
|
140 |
+
# print model parameters
|
141 |
+
logger.info("All parameters: \n" + parameter_count_table(model))
|
142 |
+
logger.info("Trainable parameters: \n" + parameter_count_table(model, trainable_only=True, max_depth=8))
|
143 |
+
|
144 |
+
def run_step(self):
|
145 |
+
"""
|
146 |
+
Implement the AMP training logic.
|
147 |
+
"""
|
148 |
+
assert self.model.training, "[AMPTrainer] model was changed to eval mode!"
|
149 |
+
assert torch.cuda.is_available(), "[AMPTrainer] CUDA is required for AMP training!"
|
150 |
+
from torch.cuda.amp import autocast
|
151 |
+
|
152 |
+
#matting pass
|
153 |
+
start = time.perf_counter()
|
154 |
+
data = next(self.data_loader_iter)
|
155 |
+
data_time = time.perf_counter() - start
|
156 |
+
|
157 |
+
with autocast():
|
158 |
+
loss_dict = self.model(data)
|
159 |
+
if isinstance(loss_dict, torch.Tensor):
|
160 |
+
losses = loss_dict
|
161 |
+
loss_dict = {"total_loss": loss_dict}
|
162 |
+
else:
|
163 |
+
losses = sum(loss_dict.values())
|
164 |
+
|
165 |
+
self.optimizer.zero_grad()
|
166 |
+
self.grad_scaler.scale(losses).backward()
|
167 |
+
|
168 |
+
self._write_metrics(loss_dict, data_time)
|
169 |
+
|
170 |
+
self.grad_scaler.step(self.optimizer)
|
171 |
+
self.grad_scaler.update()
|
modeling/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .backbone import *
|
2 |
+
from .criterion import *
|
3 |
+
from .decoder import *
|
4 |
+
from .meta_arch import *
|
5 |
+
from .semantic_enhanced_matting import *
|
modeling/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (272 Bytes). View file
|
|
modeling/backbone/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .backbone import *
|
2 |
+
from .vit import *
|
modeling/backbone/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (198 Bytes). View file
|
|
modeling/backbone/__pycache__/backbone.cpython-38.pyc
ADDED
Binary file (3.23 kB). View file
|
|
modeling/backbone/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (6.11 kB). View file
|
|
modeling/backbone/__pycache__/vit.cpython-38.pyc
ADDED
Binary file (12.3 kB). View file
|
|
modeling/backbone/backbone.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from abc import ABCMeta, abstractmethod
|
3 |
+
from typing import Dict
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from detectron2.layers import ShapeSpec
|
7 |
+
|
8 |
+
__all__ = ["Backbone"]
|
9 |
+
|
10 |
+
|
11 |
+
class Backbone(nn.Module, metaclass=ABCMeta):
|
12 |
+
"""
|
13 |
+
Abstract base class for network backbones.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self):
|
17 |
+
"""
|
18 |
+
The `__init__` method of any subclass can specify its own set of arguments.
|
19 |
+
"""
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
@abstractmethod
|
23 |
+
def forward(self):
|
24 |
+
"""
|
25 |
+
Subclasses must override this method, but adhere to the same return type.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
dict[str->Tensor]: mapping from feature name (e.g., "res2") to tensor
|
29 |
+
"""
|
30 |
+
pass
|
31 |
+
|
32 |
+
@property
|
33 |
+
def size_divisibility(self) -> int:
|
34 |
+
"""
|
35 |
+
Some backbones require the input height and width to be divisible by a
|
36 |
+
specific integer. This is typically true for encoder / decoder type networks
|
37 |
+
with lateral connection (e.g., FPN) for which feature maps need to match
|
38 |
+
dimension in the "bottom up" and "top down" paths. Set to 0 if no specific
|
39 |
+
input size divisibility is required.
|
40 |
+
"""
|
41 |
+
return 0
|
42 |
+
|
43 |
+
@property
|
44 |
+
def padding_constraints(self) -> Dict[str, int]:
|
45 |
+
"""
|
46 |
+
This property is a generalization of size_divisibility. Some backbones and training
|
47 |
+
recipes require specific padding constraints, such as enforcing divisibility by a specific
|
48 |
+
integer (e.g., FPN) or padding to a square (e.g., ViTDet with large-scale jitter
|
49 |
+
in :paper:vitdet). `padding_constraints` contains these optional items like:
|
50 |
+
{
|
51 |
+
"size_divisibility": int,
|
52 |
+
"square_size": int,
|
53 |
+
# Future options are possible
|
54 |
+
}
|
55 |
+
`size_divisibility` will read from here if presented and `square_size` indicates the
|
56 |
+
square padding size if `square_size` > 0.
|
57 |
+
|
58 |
+
TODO: use type of Dict[str, int] to avoid torchscipt issues. The type of padding_constraints
|
59 |
+
could be generalized as TypedDict (Python 3.8+) to support more types in the future.
|
60 |
+
"""
|
61 |
+
return {}
|
62 |
+
|
63 |
+
def output_shape(self):
|
64 |
+
"""
|
65 |
+
Returns:
|
66 |
+
dict[str->ShapeSpec]
|
67 |
+
"""
|
68 |
+
# this is a backward-compatible default
|
69 |
+
return {
|
70 |
+
name: ShapeSpec(
|
71 |
+
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
|
72 |
+
)
|
73 |
+
for name in self._out_features
|
74 |
+
}
|
modeling/backbone/utils.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"window_partition",
|
9 |
+
"window_unpartition",
|
10 |
+
"add_decomposed_rel_pos",
|
11 |
+
"get_abs_pos",
|
12 |
+
"PatchEmbed",
|
13 |
+
]
|
14 |
+
|
15 |
+
|
16 |
+
def window_partition(x, window_size):
|
17 |
+
"""
|
18 |
+
Partition into non-overlapping windows with padding if needed.
|
19 |
+
Args:
|
20 |
+
x (tensor): input tokens with [B, H, W, C].
|
21 |
+
window_size (int): window size.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
25 |
+
(Hp, Wp): padded height and width before partition
|
26 |
+
"""
|
27 |
+
B, H, W, C = x.shape
|
28 |
+
|
29 |
+
pad_h = (window_size - H % window_size) % window_size
|
30 |
+
pad_w = (window_size - W % window_size) % window_size
|
31 |
+
if pad_h > 0 or pad_w > 0:
|
32 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
33 |
+
Hp, Wp = H + pad_h, W + pad_w
|
34 |
+
|
35 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
36 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
37 |
+
return windows, (Hp, Wp)
|
38 |
+
|
39 |
+
|
40 |
+
def window_unpartition(windows, window_size, pad_hw, hw):
|
41 |
+
"""
|
42 |
+
Window unpartition into original sequences and removing padding.
|
43 |
+
Args:
|
44 |
+
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
45 |
+
window_size (int): window size.
|
46 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
47 |
+
hw (Tuple): original height and width (H, W) before padding.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
x: unpartitioned sequences with [B, H, W, C].
|
51 |
+
"""
|
52 |
+
Hp, Wp = pad_hw
|
53 |
+
H, W = hw
|
54 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
55 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
56 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
57 |
+
|
58 |
+
if Hp > H or Wp > W:
|
59 |
+
x = x[:, :H, :W, :].contiguous()
|
60 |
+
return x
|
61 |
+
|
62 |
+
|
63 |
+
def get_rel_pos(q_size, k_size, rel_pos):
|
64 |
+
"""
|
65 |
+
Get relative positional embeddings according to the relative positions of
|
66 |
+
query and key sizes.
|
67 |
+
Args:
|
68 |
+
q_size (int): size of query q.
|
69 |
+
k_size (int): size of key k.
|
70 |
+
rel_pos (Tensor): relative position embeddings (L, C).
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
Extracted positional embeddings according to relative positions.
|
74 |
+
"""
|
75 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
76 |
+
# Interpolate rel pos if needed.
|
77 |
+
if rel_pos.shape[0] != max_rel_dist:
|
78 |
+
# Interpolate rel pos.
|
79 |
+
rel_pos_resized = F.interpolate(
|
80 |
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
81 |
+
size=max_rel_dist,
|
82 |
+
mode="linear",
|
83 |
+
)
|
84 |
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
85 |
+
else:
|
86 |
+
rel_pos_resized = rel_pos
|
87 |
+
|
88 |
+
# Scale the coords with short length if shapes for q and k are different.
|
89 |
+
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
90 |
+
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
91 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
92 |
+
|
93 |
+
return rel_pos_resized[relative_coords.long()]
|
94 |
+
|
95 |
+
|
96 |
+
def add_decomposed_rel_pos(attn, q, rel_pos_h, rel_pos_w, q_size, k_size):
|
97 |
+
"""
|
98 |
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
99 |
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
100 |
+
Args:
|
101 |
+
attn (Tensor): attention map.
|
102 |
+
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
103 |
+
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
104 |
+
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
105 |
+
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
106 |
+
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
attn (Tensor): attention map with added relative positional embeddings.
|
110 |
+
"""
|
111 |
+
q_h, q_w = q_size
|
112 |
+
k_h, k_w = k_size
|
113 |
+
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
114 |
+
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
115 |
+
|
116 |
+
B, _, dim = q.shape
|
117 |
+
r_q = q.reshape(B, q_h, q_w, dim)
|
118 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
119 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
120 |
+
|
121 |
+
attn = (
|
122 |
+
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
123 |
+
).view(B, q_h * q_w, k_h * k_w)
|
124 |
+
|
125 |
+
return attn
|
126 |
+
|
127 |
+
|
128 |
+
def get_abs_pos(abs_pos, has_cls_token, hw):
|
129 |
+
"""
|
130 |
+
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token
|
131 |
+
dimension for the original embeddings.
|
132 |
+
Args:
|
133 |
+
abs_pos (Tensor): absolute positional embeddings with (1, num_position, C).
|
134 |
+
has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token.
|
135 |
+
hw (Tuple): size of input image tokens.
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
Absolute positional embeddings after processing with shape (1, H, W, C)
|
139 |
+
"""
|
140 |
+
h, w = hw
|
141 |
+
if has_cls_token:
|
142 |
+
abs_pos = abs_pos[:, 1:]
|
143 |
+
xy_num = abs_pos.shape[1]
|
144 |
+
size = int(math.sqrt(xy_num))
|
145 |
+
assert size * size == xy_num
|
146 |
+
|
147 |
+
if size != h or size != w:
|
148 |
+
new_abs_pos = F.interpolate(
|
149 |
+
abs_pos.reshape(1, size, size, -1).permute(0, 3, 1, 2),
|
150 |
+
size=(h, w),
|
151 |
+
mode="bicubic",
|
152 |
+
align_corners=False,
|
153 |
+
)
|
154 |
+
|
155 |
+
return new_abs_pos.permute(0, 2, 3, 1)
|
156 |
+
else:
|
157 |
+
return abs_pos.reshape(1, h, w, -1)
|
158 |
+
|
159 |
+
|
160 |
+
class PatchEmbed(nn.Module):
|
161 |
+
"""
|
162 |
+
Image to Patch Embedding.
|
163 |
+
"""
|
164 |
+
|
165 |
+
def __init__(
|
166 |
+
self, kernel_size=(16, 16), stride=(16, 16), padding=(0, 0), in_chans=3, embed_dim=768
|
167 |
+
):
|
168 |
+
"""
|
169 |
+
Args:
|
170 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
171 |
+
stride (Tuple): stride of the projection layer.
|
172 |
+
padding (Tuple): padding size of the projection layer.
|
173 |
+
in_chans (int): Number of input image channels.
|
174 |
+
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
175 |
+
"""
|
176 |
+
super().__init__()
|
177 |
+
|
178 |
+
self.proj = nn.Conv2d(
|
179 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
180 |
+
)
|
181 |
+
|
182 |
+
def forward(self, x):
|
183 |
+
x = self.proj(x)
|
184 |
+
# B C H W -> B H W C
|
185 |
+
x = x.permute(0, 2, 3, 1)
|
186 |
+
return x
|
modeling/backbone/vit.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
import fvcore.nn.weight_init as weight_init
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from detectron2.layers import CNNBlockBase, Conv2d, get_norm
|
8 |
+
from detectron2.modeling.backbone.fpn import _assert_strides_are_log2_contiguous
|
9 |
+
from fairscale.nn.checkpoint import checkpoint_wrapper
|
10 |
+
from timm.models.layers import DropPath, Mlp, trunc_normal_
|
11 |
+
from .backbone import Backbone
|
12 |
+
from .utils import (
|
13 |
+
PatchEmbed,
|
14 |
+
add_decomposed_rel_pos,
|
15 |
+
get_abs_pos,
|
16 |
+
window_partition,
|
17 |
+
window_unpartition,
|
18 |
+
)
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
__all__ = ["ViT"]
|
24 |
+
|
25 |
+
|
26 |
+
class Attention(nn.Module):
|
27 |
+
"""Multi-head Attention block with relative position embeddings."""
|
28 |
+
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
dim,
|
32 |
+
num_heads=8,
|
33 |
+
qkv_bias=True,
|
34 |
+
use_rel_pos=False,
|
35 |
+
rel_pos_zero_init=True,
|
36 |
+
input_size=None,
|
37 |
+
):
|
38 |
+
"""
|
39 |
+
Args:
|
40 |
+
dim (int): Number of input channels.
|
41 |
+
num_heads (int): Number of attention heads.
|
42 |
+
qkv_bias (bool: If True, add a learnable bias to query, key, value.
|
43 |
+
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
44 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
45 |
+
input_size (int or None): Input resolution for calculating the relative positional
|
46 |
+
parameter size.
|
47 |
+
"""
|
48 |
+
super().__init__()
|
49 |
+
self.num_heads = num_heads
|
50 |
+
head_dim = dim // num_heads
|
51 |
+
self.scale = head_dim**-0.5
|
52 |
+
|
53 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
54 |
+
self.proj = nn.Linear(dim, dim)
|
55 |
+
|
56 |
+
self.use_rel_pos = use_rel_pos
|
57 |
+
if self.use_rel_pos:
|
58 |
+
# initialize relative positional embeddings
|
59 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
60 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
61 |
+
|
62 |
+
if not rel_pos_zero_init:
|
63 |
+
trunc_normal_(self.rel_pos_h, std=0.02)
|
64 |
+
trunc_normal_(self.rel_pos_w, std=0.02)
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
B, H, W, _ = x.shape
|
68 |
+
# qkv with shape (3, B, nHead, H * W, C)
|
69 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
70 |
+
# q, k, v with shape (B * nHead, H * W, C)
|
71 |
+
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
72 |
+
|
73 |
+
attn = (q * self.scale) @ k.transpose(-2, -1)
|
74 |
+
|
75 |
+
if self.use_rel_pos:
|
76 |
+
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
77 |
+
|
78 |
+
attn = attn.softmax(dim=-1)
|
79 |
+
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
80 |
+
x = self.proj(x)
|
81 |
+
|
82 |
+
return x
|
83 |
+
|
84 |
+
class LayerNorm(nn.Module):
|
85 |
+
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
86 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
87 |
+
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
88 |
+
with shape (batch_size, channels, height, width).
|
89 |
+
"""
|
90 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
91 |
+
super().__init__()
|
92 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
93 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
94 |
+
self.eps = eps
|
95 |
+
self.data_format = data_format
|
96 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
97 |
+
raise NotImplementedError
|
98 |
+
self.normalized_shape = (normalized_shape, )
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
if self.data_format == "channels_last":
|
102 |
+
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
103 |
+
elif self.data_format == "channels_first":
|
104 |
+
u = x.mean(1, keepdim=True)
|
105 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
106 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
107 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
108 |
+
return x
|
109 |
+
|
110 |
+
class ResBottleneckBlock(CNNBlockBase):
|
111 |
+
"""
|
112 |
+
The standard bottleneck residual block without the last activation layer.
|
113 |
+
It contains 3 conv layers with kernels 1x1, 3x3, 1x1.
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
in_channels,
|
119 |
+
out_channels,
|
120 |
+
bottleneck_channels,
|
121 |
+
norm="LN",
|
122 |
+
act_layer=nn.GELU,
|
123 |
+
conv_kernels=3,
|
124 |
+
conv_paddings=1,
|
125 |
+
):
|
126 |
+
"""
|
127 |
+
Args:
|
128 |
+
in_channels (int): Number of input channels.
|
129 |
+
out_channels (int): Number of output channels.
|
130 |
+
bottleneck_channels (int): number of output channels for the 3x3
|
131 |
+
"bottleneck" conv layers.
|
132 |
+
norm (str or callable): normalization for all conv layers.
|
133 |
+
See :func:`layers.get_norm` for supported format.
|
134 |
+
act_layer (callable): activation for all conv layers.
|
135 |
+
"""
|
136 |
+
super().__init__(in_channels, out_channels, 1)
|
137 |
+
|
138 |
+
self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False)
|
139 |
+
self.norm1 = get_norm(norm, bottleneck_channels)
|
140 |
+
self.act1 = act_layer()
|
141 |
+
|
142 |
+
self.conv2 = Conv2d(
|
143 |
+
bottleneck_channels,
|
144 |
+
bottleneck_channels,
|
145 |
+
conv_kernels,
|
146 |
+
padding=conv_paddings,
|
147 |
+
bias=False,
|
148 |
+
)
|
149 |
+
self.norm2 = get_norm(norm, bottleneck_channels)
|
150 |
+
self.act2 = act_layer()
|
151 |
+
|
152 |
+
self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False)
|
153 |
+
self.norm3 = get_norm(norm, out_channels)
|
154 |
+
|
155 |
+
for layer in [self.conv1, self.conv2, self.conv3]:
|
156 |
+
weight_init.c2_msra_fill(layer)
|
157 |
+
for layer in [self.norm1, self.norm2]:
|
158 |
+
layer.weight.data.fill_(1.0)
|
159 |
+
layer.bias.data.zero_()
|
160 |
+
# zero init last norm layer.
|
161 |
+
self.norm3.weight.data.zero_()
|
162 |
+
self.norm3.bias.data.zero_()
|
163 |
+
|
164 |
+
def forward(self, x):
|
165 |
+
out = x
|
166 |
+
for layer in self.children():
|
167 |
+
out = layer(out)
|
168 |
+
|
169 |
+
out = x + out
|
170 |
+
return out
|
171 |
+
|
172 |
+
|
173 |
+
class Block(nn.Module):
|
174 |
+
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
175 |
+
|
176 |
+
def __init__(
|
177 |
+
self,
|
178 |
+
dim,
|
179 |
+
num_heads,
|
180 |
+
mlp_ratio=4.0,
|
181 |
+
qkv_bias=True,
|
182 |
+
drop_path=0.0,
|
183 |
+
norm_layer=nn.LayerNorm,
|
184 |
+
act_layer=nn.GELU,
|
185 |
+
use_rel_pos=False,
|
186 |
+
rel_pos_zero_init=True,
|
187 |
+
window_size=0,
|
188 |
+
use_cc_attn = False,
|
189 |
+
use_residual_block=False,
|
190 |
+
use_convnext_block=False,
|
191 |
+
input_size=None,
|
192 |
+
res_conv_kernel_size=3,
|
193 |
+
res_conv_padding=1,
|
194 |
+
):
|
195 |
+
"""
|
196 |
+
Args:
|
197 |
+
dim (int): Number of input channels.
|
198 |
+
num_heads (int): Number of attention heads in each ViT block.
|
199 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
200 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
201 |
+
drop_path (float): Stochastic depth rate.
|
202 |
+
norm_layer (nn.Module): Normalization layer.
|
203 |
+
act_layer (nn.Module): Activation layer.
|
204 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
205 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
206 |
+
window_size (int): Window size for window attention blocks. If it equals 0, then not
|
207 |
+
use window attention.
|
208 |
+
use_residual_block (bool): If True, use a residual block after the MLP block.
|
209 |
+
input_size (int or None): Input resolution for calculating the relative positional
|
210 |
+
parameter size.
|
211 |
+
"""
|
212 |
+
super().__init__()
|
213 |
+
self.norm1 = norm_layer(dim)
|
214 |
+
self.attn = Attention(
|
215 |
+
dim,
|
216 |
+
num_heads=num_heads,
|
217 |
+
qkv_bias=qkv_bias,
|
218 |
+
use_rel_pos=use_rel_pos,
|
219 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
220 |
+
input_size=input_size if window_size == 0 else (window_size, window_size),
|
221 |
+
)
|
222 |
+
|
223 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
224 |
+
self.norm2 = norm_layer(dim)
|
225 |
+
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer)
|
226 |
+
|
227 |
+
self.window_size = window_size
|
228 |
+
|
229 |
+
self.use_residual_block = use_residual_block
|
230 |
+
if use_residual_block:
|
231 |
+
# Use a residual block with bottleneck channel as dim // 2
|
232 |
+
self.residual = ResBottleneckBlock(
|
233 |
+
in_channels=dim,
|
234 |
+
out_channels=dim,
|
235 |
+
bottleneck_channels=dim // 2,
|
236 |
+
norm="LN",
|
237 |
+
act_layer=act_layer,
|
238 |
+
conv_kernels=res_conv_kernel_size,
|
239 |
+
conv_paddings=res_conv_padding,
|
240 |
+
)
|
241 |
+
self.use_convnext_block = use_convnext_block
|
242 |
+
if use_convnext_block:
|
243 |
+
self.convnext = ConvNextBlock(dim = dim)
|
244 |
+
|
245 |
+
if use_cc_attn:
|
246 |
+
self.attn = CrissCrossAttention(dim)
|
247 |
+
|
248 |
+
|
249 |
+
def forward(self, x):
|
250 |
+
shortcut = x
|
251 |
+
x = self.norm1(x)
|
252 |
+
# Window partition
|
253 |
+
if self.window_size > 0:
|
254 |
+
H, W = x.shape[1], x.shape[2]
|
255 |
+
x, pad_hw = window_partition(x, self.window_size)
|
256 |
+
|
257 |
+
x = self.attn(x)
|
258 |
+
|
259 |
+
# Reverse window partition
|
260 |
+
if self.window_size > 0:
|
261 |
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
262 |
+
|
263 |
+
x = shortcut + self.drop_path(x)
|
264 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
265 |
+
|
266 |
+
if self.use_residual_block:
|
267 |
+
x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
|
268 |
+
if self.use_convnext_block:
|
269 |
+
x = self.convnext(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
|
270 |
+
|
271 |
+
return x
|
272 |
+
|
273 |
+
|
274 |
+
class ViT(Backbone):
|
275 |
+
"""
|
276 |
+
This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`.
|
277 |
+
"Exploring Plain Vision Transformer Backbones for Object Detection",
|
278 |
+
https://arxiv.org/abs/2203.16527
|
279 |
+
"""
|
280 |
+
|
281 |
+
def __init__(
|
282 |
+
self,
|
283 |
+
img_size=1024,
|
284 |
+
patch_size=16,
|
285 |
+
in_chans=3,
|
286 |
+
embed_dim=768,
|
287 |
+
depth=12,
|
288 |
+
num_heads=12,
|
289 |
+
mlp_ratio=4.0,
|
290 |
+
qkv_bias=True,
|
291 |
+
drop_path_rate=0.0,
|
292 |
+
norm_layer=nn.LayerNorm,
|
293 |
+
act_layer=nn.GELU,
|
294 |
+
use_abs_pos=True,
|
295 |
+
use_rel_pos=False,
|
296 |
+
rel_pos_zero_init=True,
|
297 |
+
window_size=0,
|
298 |
+
window_block_indexes=(),
|
299 |
+
residual_block_indexes=(),
|
300 |
+
use_act_checkpoint=False,
|
301 |
+
pretrain_img_size=224,
|
302 |
+
pretrain_use_cls_token=True,
|
303 |
+
out_feature="last_feat",
|
304 |
+
res_conv_kernel_size=3,
|
305 |
+
res_conv_padding=1,
|
306 |
+
):
|
307 |
+
"""
|
308 |
+
Args:
|
309 |
+
img_size (int): Input image size.
|
310 |
+
patch_size (int): Patch size.
|
311 |
+
in_chans (int): Number of input image channels.
|
312 |
+
embed_dim (int): Patch embedding dimension.
|
313 |
+
depth (int): Depth of ViT.
|
314 |
+
num_heads (int): Number of attention heads in each ViT block.
|
315 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
316 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
317 |
+
drop_path_rate (float): Stochastic depth rate.
|
318 |
+
norm_layer (nn.Module): Normalization layer.
|
319 |
+
act_layer (nn.Module): Activation layer.
|
320 |
+
use_abs_pos (bool): If True, use absolute positional embeddings.
|
321 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
322 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
323 |
+
window_size (int): Window size for window attention blocks.
|
324 |
+
window_block_indexes (list): Indexes for blocks using window attention.
|
325 |
+
residual_block_indexes (list): Indexes for blocks using conv propagation.
|
326 |
+
use_act_checkpoint (bool): If True, use activation checkpointing.
|
327 |
+
pretrain_img_size (int): input image size for pretraining models.
|
328 |
+
pretrain_use_cls_token (bool): If True, pretrainig models use class token.
|
329 |
+
out_feature (str): name of the feature from the last block.
|
330 |
+
"""
|
331 |
+
super().__init__()
|
332 |
+
self.pretrain_use_cls_token = pretrain_use_cls_token
|
333 |
+
|
334 |
+
self.patch_embed = PatchEmbed(
|
335 |
+
kernel_size=(patch_size, patch_size),
|
336 |
+
stride=(patch_size, patch_size),
|
337 |
+
in_chans=in_chans,
|
338 |
+
embed_dim=embed_dim,
|
339 |
+
)
|
340 |
+
|
341 |
+
if use_abs_pos:
|
342 |
+
# Initialize absolute positional embedding with pretrain image size.
|
343 |
+
num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size)
|
344 |
+
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches
|
345 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim))
|
346 |
+
else:
|
347 |
+
self.pos_embed = None
|
348 |
+
|
349 |
+
# stochastic depth decay rule
|
350 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
|
351 |
+
|
352 |
+
self.blocks = nn.ModuleList()
|
353 |
+
for i in range(depth):
|
354 |
+
block = Block(
|
355 |
+
dim=embed_dim,
|
356 |
+
num_heads=num_heads,
|
357 |
+
mlp_ratio=mlp_ratio,
|
358 |
+
qkv_bias=qkv_bias,
|
359 |
+
drop_path=dpr[i],
|
360 |
+
norm_layer=norm_layer,
|
361 |
+
act_layer=act_layer,
|
362 |
+
use_rel_pos=use_rel_pos,
|
363 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
364 |
+
window_size=window_size if i in window_block_indexes else 0,
|
365 |
+
use_residual_block=i in residual_block_indexes,
|
366 |
+
input_size=(img_size // patch_size, img_size // patch_size),
|
367 |
+
res_conv_kernel_size=res_conv_kernel_size,
|
368 |
+
res_conv_padding=res_conv_padding,
|
369 |
+
)
|
370 |
+
if use_act_checkpoint:
|
371 |
+
block = checkpoint_wrapper(block)
|
372 |
+
self.blocks.append(block)
|
373 |
+
|
374 |
+
self._out_feature_channels = {out_feature: embed_dim}
|
375 |
+
self._out_feature_strides = {out_feature: patch_size}
|
376 |
+
self._out_features = [out_feature]
|
377 |
+
|
378 |
+
if self.pos_embed is not None:
|
379 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
380 |
+
|
381 |
+
self.apply(self._init_weights)
|
382 |
+
|
383 |
+
def _init_weights(self, m):
|
384 |
+
if isinstance(m, nn.Linear):
|
385 |
+
trunc_normal_(m.weight, std=0.02)
|
386 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
387 |
+
nn.init.constant_(m.bias, 0)
|
388 |
+
elif isinstance(m, nn.LayerNorm):
|
389 |
+
nn.init.constant_(m.bias, 0)
|
390 |
+
nn.init.constant_(m.weight, 1.0)
|
391 |
+
|
392 |
+
def forward(self, x):
|
393 |
+
x = self.patch_embed(x)
|
394 |
+
if self.pos_embed is not None:
|
395 |
+
x = x + get_abs_pos(
|
396 |
+
self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2])
|
397 |
+
)
|
398 |
+
|
399 |
+
for blk in self.blocks:
|
400 |
+
x = blk(x)
|
401 |
+
|
402 |
+
outputs = {self._out_features[0]: x.permute(0, 3, 1, 2)}
|
403 |
+
|
404 |
+
return outputs['last_feat']
|
modeling/criterion/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .matting_criterion import MattingCriterion
|
modeling/criterion/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (217 Bytes). View file
|
|
modeling/criterion/__pycache__/matting_criterion.cpython-38.pyc
ADDED
Binary file (7.89 kB). View file
|
|
modeling/criterion/matting_criterion.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from collections import defaultdict
|
5 |
+
|
6 |
+
|
7 |
+
class MattingCriterion(nn.Module):
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
*,
|
11 |
+
losses,
|
12 |
+
image_size = 1024,
|
13 |
+
):
|
14 |
+
super(MattingCriterion, self).__init__()
|
15 |
+
self.losses = losses
|
16 |
+
self.image_size = image_size
|
17 |
+
|
18 |
+
def loss_gradient_penalty(self, sample_map, preds, targets):
|
19 |
+
|
20 |
+
#sample_map for unknown area
|
21 |
+
if torch.sum(sample_map) == 0:
|
22 |
+
scale = 0
|
23 |
+
else:
|
24 |
+
scale = sample_map.shape[0] * (self.image_size ** 2) / torch.sum(sample_map)
|
25 |
+
|
26 |
+
#gradient in x
|
27 |
+
sobel_x_kernel = torch.tensor([[[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]]]).type(dtype=preds.type())
|
28 |
+
delta_pred_x = F.conv2d(preds, weight=sobel_x_kernel, padding=1)
|
29 |
+
delta_gt_x = F.conv2d(targets, weight=sobel_x_kernel, padding=1)
|
30 |
+
|
31 |
+
#gradient in y
|
32 |
+
sobel_y_kernel = torch.tensor([[[[-1, -2, -1], [0, 0, 0], [1, 2, 1]]]]).type(dtype=preds.type())
|
33 |
+
delta_pred_y = F.conv2d(preds, weight=sobel_y_kernel, padding=1)
|
34 |
+
delta_gt_y = F.conv2d(targets, weight=sobel_y_kernel, padding=1)
|
35 |
+
|
36 |
+
#loss
|
37 |
+
loss = (F.l1_loss(delta_pred_x * sample_map, delta_gt_x * sample_map) * scale + \
|
38 |
+
F.l1_loss(delta_pred_y * sample_map, delta_gt_y * sample_map) * scale + \
|
39 |
+
0.01 * torch.mean(torch.abs(delta_pred_x * sample_map)) * scale + \
|
40 |
+
0.01 * torch.mean(torch.abs(delta_pred_y * sample_map)) * scale)
|
41 |
+
|
42 |
+
return dict(loss_gradient_penalty=loss)
|
43 |
+
|
44 |
+
def loss_pha_laplacian(self, preds, targets):
|
45 |
+
loss = laplacian_loss(preds, targets)
|
46 |
+
return dict(loss_pha_laplacian=loss)
|
47 |
+
|
48 |
+
def unknown_l1_loss(self, sample_map, preds, targets):
|
49 |
+
|
50 |
+
if torch.sum(sample_map) == 0:
|
51 |
+
scale = 0
|
52 |
+
else:
|
53 |
+
scale = sample_map.shape[0] * (self.image_size ** 2) / torch.sum(sample_map)
|
54 |
+
# scale = 1
|
55 |
+
|
56 |
+
loss = F.l1_loss(preds * sample_map, targets * sample_map) * scale
|
57 |
+
|
58 |
+
return dict(unknown_l1_loss=loss)
|
59 |
+
|
60 |
+
def known_l1_loss(self, sample_map, preds, targets):
|
61 |
+
new_sample_map = torch.zeros_like(sample_map)
|
62 |
+
new_sample_map[sample_map==0] = 1
|
63 |
+
|
64 |
+
if torch.sum(new_sample_map) == 0:
|
65 |
+
scale = 0
|
66 |
+
else:
|
67 |
+
scale = new_sample_map.shape[0] * (self.image_size ** 2) / torch.sum(new_sample_map)
|
68 |
+
# scale = 1
|
69 |
+
|
70 |
+
loss = F.l1_loss(preds * new_sample_map, targets * new_sample_map) * scale
|
71 |
+
|
72 |
+
return dict(known_l1_loss=loss)
|
73 |
+
|
74 |
+
def get_loss(self, k, sample_map, preds, targets):
|
75 |
+
if k=='unknown_l1_loss' or k=='known_l1_loss' or k=='loss_gradient_penalty':
|
76 |
+
losses = getattr(self, k)(sample_map, preds, targets)
|
77 |
+
else:
|
78 |
+
losses = getattr(self, k)(preds, targets)
|
79 |
+
assert len(list(losses.keys())) == 1
|
80 |
+
return losses[list(losses.keys())[0]]
|
81 |
+
|
82 |
+
def forward(self, sample_map, preds, targets, batch_weight=None):
|
83 |
+
losses = {i: torch.tensor(0.0, device=sample_map.device) for i in self.losses}
|
84 |
+
for k in self.losses:
|
85 |
+
if batch_weight is None:
|
86 |
+
losses[k] += self.get_loss(k, sample_map, preds, targets)
|
87 |
+
else:
|
88 |
+
for i, loss_weight in enumerate(batch_weight):
|
89 |
+
if loss_weight == -1.0 and k != 'known_l1_loss':
|
90 |
+
continue
|
91 |
+
else:
|
92 |
+
losses[k] += self.get_loss(k, sample_map[i: i + 1], preds[i: i + 1], targets[i: i + 1]) * abs(loss_weight)
|
93 |
+
return losses
|
94 |
+
|
95 |
+
|
96 |
+
#-----------------Laplacian Loss-------------------------#
|
97 |
+
def laplacian_loss(pred, true, max_levels=5):
|
98 |
+
kernel = gauss_kernel(device=pred.device, dtype=pred.dtype)
|
99 |
+
pred_pyramid = laplacian_pyramid(pred, kernel, max_levels)
|
100 |
+
true_pyramid = laplacian_pyramid(true, kernel, max_levels)
|
101 |
+
loss = 0
|
102 |
+
for level in range(max_levels):
|
103 |
+
loss += (2 ** level) * F.l1_loss(pred_pyramid[level], true_pyramid[level])
|
104 |
+
return loss / max_levels
|
105 |
+
|
106 |
+
def laplacian_pyramid(img, kernel, max_levels):
|
107 |
+
current = img
|
108 |
+
pyramid = []
|
109 |
+
for _ in range(max_levels):
|
110 |
+
current = crop_to_even_size(current)
|
111 |
+
down = downsample(current, kernel)
|
112 |
+
up = upsample(down, kernel)
|
113 |
+
diff = current - up
|
114 |
+
pyramid.append(diff)
|
115 |
+
current = down
|
116 |
+
return pyramid
|
117 |
+
|
118 |
+
def gauss_kernel(device='cpu', dtype=torch.float32):
|
119 |
+
kernel = torch.tensor([[1, 4, 6, 4, 1],
|
120 |
+
[4, 16, 24, 16, 4],
|
121 |
+
[6, 24, 36, 24, 6],
|
122 |
+
[4, 16, 24, 16, 4],
|
123 |
+
[1, 4, 6, 4, 1]], device=device, dtype=dtype)
|
124 |
+
kernel /= 256
|
125 |
+
kernel = kernel[None, None, :, :]
|
126 |
+
return kernel
|
127 |
+
|
128 |
+
def gauss_convolution(img, kernel):
|
129 |
+
B, C, H, W = img.shape
|
130 |
+
img = img.reshape(B * C, 1, H, W)
|
131 |
+
img = F.pad(img, (2, 2, 2, 2), mode='reflect')
|
132 |
+
img = F.conv2d(img, kernel)
|
133 |
+
img = img.reshape(B, C, H, W)
|
134 |
+
return img
|
135 |
+
|
136 |
+
def downsample(img, kernel):
|
137 |
+
img = gauss_convolution(img, kernel)
|
138 |
+
img = img[:, :, ::2, ::2]
|
139 |
+
return img
|
140 |
+
|
141 |
+
def upsample(img, kernel):
|
142 |
+
B, C, H, W = img.shape
|
143 |
+
out = torch.zeros((B, C, H * 2, W * 2), device=img.device, dtype=img.dtype)
|
144 |
+
out[:, :, ::2, ::2] = img * 4
|
145 |
+
out = gauss_convolution(out, kernel)
|
146 |
+
return out
|
147 |
+
|
148 |
+
def crop_to_even_size(img):
|
149 |
+
H, W = img.shape[2:]
|
150 |
+
H = H - H % 2
|
151 |
+
W = W - W % 2
|
152 |
+
return img[:, :, :H, :W]
|
153 |
+
|
154 |
+
def normalized_focal_loss(pred, gt, gamma=2, class_num=3, norm=True, beta_detach=False, beta_sum_detach=False):
|
155 |
+
pred_logits = F.softmax(pred, dim=1) # [B, 3, H, W]
|
156 |
+
gt_one_hot = F.one_hot(gt, class_num).permute(0, 3, 1, 2) # [B, 3, H, W]
|
157 |
+
p = (pred_logits * gt_one_hot).sum(dim=1) # [B, H, W]
|
158 |
+
beta = (1 - p) ** gamma # [B, H, W]
|
159 |
+
beta_sum = torch.sum(beta, dim=(-2, -1), keepdim=True) / (pred.shape[-1] * pred.shape[-2]) # [B, 1, 1]
|
160 |
+
|
161 |
+
if beta_detach:
|
162 |
+
beta = beta.detach()
|
163 |
+
if beta_sum_detach:
|
164 |
+
beta_sum = beta_sum.detach()
|
165 |
+
|
166 |
+
if norm:
|
167 |
+
loss = 1 / beta_sum * beta * (-torch.log(p))
|
168 |
+
return torch.mean(loss)
|
169 |
+
else:
|
170 |
+
loss = beta * (-torch.log(p))
|
171 |
+
return torch.mean(loss)
|
172 |
+
|
173 |
+
class GHMC(nn.Module):
|
174 |
+
def __init__(self, bins=10, momentum=0.75, loss_weight=1.0, device='cuda', norm=False):
|
175 |
+
super(GHMC, self).__init__()
|
176 |
+
self.bins = bins
|
177 |
+
self.momentum = momentum
|
178 |
+
self.edges = torch.arange(bins + 1).float().cuda() / bins
|
179 |
+
self.edges[-1] += 1e-6
|
180 |
+
if momentum > 0:
|
181 |
+
self.acc_sum = torch.zeros(bins).cuda()
|
182 |
+
self.loss_weight = loss_weight
|
183 |
+
self.device = device
|
184 |
+
self.norm = norm
|
185 |
+
|
186 |
+
def forward(self, pred, target, *args, **kwargs):
|
187 |
+
"""Calculate the GHM-C loss.
|
188 |
+
Args:
|
189 |
+
pred (float tensor of size [batch_num, class_num]):
|
190 |
+
The direct prediction of classification fc layer.
|
191 |
+
target (float tensor of size [batch_num, class_num]):
|
192 |
+
Binary class target for each sample.
|
193 |
+
label_weight (float tensor of size [batch_num, class_num]):
|
194 |
+
the value is 1 if the sample is valid and 0 if ignored.
|
195 |
+
Returns:
|
196 |
+
The gradient harmonized loss.
|
197 |
+
"""
|
198 |
+
|
199 |
+
# the target should be binary class label
|
200 |
+
# if pred.dim() != target.dim():
|
201 |
+
# target, label_weight = _expand_binary_labels(
|
202 |
+
# target, label_weight, pred.size(-1))
|
203 |
+
# target, label_weight = target.float(), label_weight.float()
|
204 |
+
# pdb.set_trace()
|
205 |
+
|
206 |
+
# pred: [B, C, H, W], target: [B, H, W]
|
207 |
+
pred = pred.permute(0, 2, 3, 1).reshape(-1, 3) # [B x H x W, C]
|
208 |
+
target = target.reshape(-1) # [B x H x W]
|
209 |
+
# self.acc_sum = self.acc_sum.type(pred.dtype)
|
210 |
+
|
211 |
+
edges = self.edges
|
212 |
+
mmt = self.momentum
|
213 |
+
weights = torch.zeros((target.shape),dtype=pred.dtype).to(self.device)
|
214 |
+
|
215 |
+
# gradient length
|
216 |
+
#g = 1 - torch.index_select(F.softmax(pred,dim=1).detach(), dim=0, index=target)
|
217 |
+
g = 1 - torch.gather(F.softmax(pred,dim=1).detach(),dim=1,index=target.unsqueeze(1))
|
218 |
+
#g = torch.abs(pred.softmax(2).detach() - target)
|
219 |
+
|
220 |
+
tot = 1.0
|
221 |
+
n = 0 # n valid bins
|
222 |
+
for i in range(self.bins):
|
223 |
+
inds = (g >= edges[i]) & (g < edges[i+1])
|
224 |
+
num_in_bin = inds.sum().item()
|
225 |
+
if num_in_bin > 0:
|
226 |
+
idx = torch.nonzero(inds)[:, 0]
|
227 |
+
if mmt > 0:
|
228 |
+
self.acc_sum[i] = mmt * self.acc_sum[i] \
|
229 |
+
+ (1 - mmt) * num_in_bin
|
230 |
+
# pdb.set_trace()#scatter_ index_put_
|
231 |
+
#BB=torch.nonzero(inds)
|
232 |
+
_weight_idx = tot / self.acc_sum[i]
|
233 |
+
weights = weights.to(dtype=_weight_idx.dtype)
|
234 |
+
weights[idx] = _weight_idx
|
235 |
+
# weights.scatter_(0, torch.nonzero(inds)[:,0], tot / self.acc_sum[i])
|
236 |
+
# # weights.index_put_(inds, tot / self.acc_sum[i])
|
237 |
+
# weights[inds] = tot / self.acc_sum[i] # * torch.ones((len(inds)))
|
238 |
+
else:
|
239 |
+
weights[idx] = tot / num_in_bin
|
240 |
+
n += 1
|
241 |
+
if n > 0:
|
242 |
+
weights = weights / n
|
243 |
+
|
244 |
+
# pdb.set_trace()
|
245 |
+
# loss = (weights * F.cross_entropy(pred, target, reduction='none')).sum() / tot / pred.shape[0]
|
246 |
+
if self.norm:
|
247 |
+
weights = weights / torch.sum(weights).detach()
|
248 |
+
|
249 |
+
loss = - ((weights.unsqueeze(1) * torch.gather(F.log_softmax(pred, dim=1), dim=1, index=target.unsqueeze(1))).sum() ) # / pred.shape[0]
|
250 |
+
|
251 |
+
# loss3= F.cross_entropy(pred, target, reduction='mean')
|
252 |
+
# loss4 = - ((torch.gather(F.log_softmax(pred, dim=1), dim=1, index=target.unsqueeze(1))).sum() / pred.shape[0])
|
253 |
+
|
254 |
+
# pro = F.softmax(logits, dim=1)
|
255 |
+
#
|
256 |
+
# label_onehot = torch.zeros_like(logits).scatter_(1, labels.unsqueeze(1), 1)
|
257 |
+
# with torch.no_grad():
|
258 |
+
# weight_matrix = (1 - pro) ** self.gamma
|
259 |
+
# # pdb.set_trace()
|
260 |
+
# fl = - (weight_matrix * (label_onehot * (pro + self.eps).log())).sum() / pro.shape[0]
|
261 |
+
|
262 |
+
return loss
|
263 |
+
|
264 |
+
if __name__ == '__main__':
|
265 |
+
pred = torch.randn(2, 3, 1024, 1024)
|
266 |
+
gt =torch.argmax(torch.randn(2, 3, 1024, 1024), dim=1)
|
267 |
+
loss = normalized_focal_loss(pred, gt)
|
268 |
+
print(loss)
|
269 |
+
|
270 |
+
|
271 |
+
|
modeling/decoder/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .detail_capture import Detail_Capture, Ori_Detail_Capture
|
modeling/decoder/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (239 Bytes). View file
|
|
modeling/decoder/__pycache__/detail_capture.cpython-38.pyc
ADDED
Binary file (5.37 kB). View file
|
|
modeling/decoder/__pycache__/unet_detail_capture.cpython-38.pyc
ADDED
Binary file (10.8 kB). View file
|
|
modeling/decoder/detail_capture.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
class Basic_Conv3x3(nn.Module):
|
6 |
+
"""
|
7 |
+
Basic convolution layers including: Conv3x3, BatchNorm2d, ReLU layers.
|
8 |
+
"""
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
in_chans,
|
12 |
+
out_chans,
|
13 |
+
stride=2,
|
14 |
+
padding=1,
|
15 |
+
):
|
16 |
+
super().__init__()
|
17 |
+
self.conv = nn.Conv2d(in_chans, out_chans, 3, stride, padding, bias=False)
|
18 |
+
self.bn = nn.BatchNorm2d(out_chans)
|
19 |
+
self.relu = nn.ReLU(True)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = self.conv(x)
|
23 |
+
x = self.bn(x)
|
24 |
+
x = self.relu(x)
|
25 |
+
|
26 |
+
return x
|
27 |
+
|
28 |
+
class ConvStream(nn.Module):
|
29 |
+
"""
|
30 |
+
Simple ConvStream containing a series of basic conv3x3 layers to extract detail features.
|
31 |
+
"""
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
in_chans = 4,
|
35 |
+
out_chans = [48, 96, 192],
|
36 |
+
):
|
37 |
+
super().__init__()
|
38 |
+
self.convs = nn.ModuleList()
|
39 |
+
|
40 |
+
self.conv_chans = out_chans.copy()
|
41 |
+
self.conv_chans.insert(0, in_chans)
|
42 |
+
|
43 |
+
for i in range(len(self.conv_chans)-1):
|
44 |
+
in_chan_ = self.conv_chans[i]
|
45 |
+
out_chan_ = self.conv_chans[i+1]
|
46 |
+
self.convs.append(
|
47 |
+
Basic_Conv3x3(in_chan_, out_chan_)
|
48 |
+
)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
out_dict = {'D0': x}
|
52 |
+
for i in range(len(self.convs)):
|
53 |
+
x = self.convs[i](x)
|
54 |
+
name_ = 'D'+str(i+1)
|
55 |
+
out_dict[name_] = x
|
56 |
+
|
57 |
+
return out_dict
|
58 |
+
|
59 |
+
class Fusion_Block(nn.Module):
|
60 |
+
"""
|
61 |
+
Simple fusion block to fuse feature from ConvStream and Plain Vision Transformer.
|
62 |
+
"""
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
in_chans,
|
66 |
+
out_chans,
|
67 |
+
):
|
68 |
+
super().__init__()
|
69 |
+
self.conv = Basic_Conv3x3(in_chans, out_chans, stride=1, padding=1)
|
70 |
+
|
71 |
+
def forward(self, x, D):
|
72 |
+
F_up = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
|
73 |
+
out = torch.cat([D, F_up], dim=1)
|
74 |
+
out = self.conv(out)
|
75 |
+
|
76 |
+
return out
|
77 |
+
|
78 |
+
class Matting_Head(nn.Module):
|
79 |
+
"""
|
80 |
+
Simple Matting Head, containing only conv3x3 and conv1x1 layers.
|
81 |
+
"""
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
in_chans = 32,
|
85 |
+
mid_chans = 16,
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
self.matting_convs = nn.Sequential(
|
89 |
+
nn.Conv2d(in_chans, mid_chans, 3, 1, 1),
|
90 |
+
nn.BatchNorm2d(mid_chans),
|
91 |
+
nn.ReLU(True),
|
92 |
+
nn.Conv2d(mid_chans, 1, 1, 1, 0)
|
93 |
+
)
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
x = self.matting_convs(x)
|
97 |
+
|
98 |
+
return x
|
99 |
+
|
100 |
+
class Detail_Capture(nn.Module):
|
101 |
+
"""
|
102 |
+
Simple and Lightweight Detail Capture Module for ViT Matting.
|
103 |
+
"""
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
in_chans = [384, 1],
|
107 |
+
img_chans=4,
|
108 |
+
convstream_out = [48, 96, 192],
|
109 |
+
fusion_out = [256, 128, 64, 32],
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
assert len(fusion_out) == len(convstream_out) + 1
|
113 |
+
|
114 |
+
self.convstream = ConvStream(in_chans=img_chans, out_chans=convstream_out)
|
115 |
+
self.conv_chans = self.convstream.conv_chans # [4, 48, 96, 192]
|
116 |
+
|
117 |
+
self.fusion_blks = nn.ModuleList()
|
118 |
+
self.fus_channs = fusion_out.copy()
|
119 |
+
self.fus_channs.insert(0, in_chans[0]) # [384, 256, 128, 64, 32]
|
120 |
+
for i in range(len(self.fus_channs)-1):
|
121 |
+
in_channels = self.fus_channs[i] + self.conv_chans[-(i+1)] if i != 2 else in_chans[1] + self.conv_chans[-(i+1)] # [256 + 192 = 448, 256 + 96 = 352, 128 + 48 = 176, 64 + 4 = 68]
|
122 |
+
out_channels = self.fus_channs[i+1] # [256, 128, 64, 32]
|
123 |
+
self.fusion_blks.append(
|
124 |
+
Fusion_Block(
|
125 |
+
in_chans = in_channels,
|
126 |
+
out_chans = out_channels,
|
127 |
+
)
|
128 |
+
)
|
129 |
+
|
130 |
+
self.matting_head = Matting_Head( # 32 --> 1
|
131 |
+
in_chans = fusion_out[-1],
|
132 |
+
)
|
133 |
+
|
134 |
+
def forward(self, features, images):
|
135 |
+
detail_features = self.convstream(images) # [1, 4, 672, 992] --> D0: [1, 4, 672, 992], D1: [1, 48, 336, 496], D2: [1, 96, 168, 248], D3: [1, 192, 84, 124]
|
136 |
+
for i in range(len(self.fusion_blks)): # D3
|
137 |
+
d_name_ = 'D'+str(len(self.fusion_blks)-i-1)
|
138 |
+
features = self.fusion_blks[i](features, detail_features[d_name_])
|
139 |
+
|
140 |
+
phas = torch.sigmoid(self.matting_head(features))
|
141 |
+
|
142 |
+
return {'phas': phas}
|
143 |
+
|
144 |
+
|
145 |
+
class Ori_Detail_Capture(nn.Module):
|
146 |
+
"""
|
147 |
+
Simple and Lightweight Detail Capture Module for ViT Matting.
|
148 |
+
"""
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
in_chans = 384,
|
152 |
+
img_chans=4,
|
153 |
+
convstream_out = [48, 96, 192],
|
154 |
+
fusion_out = [256, 128, 64, 32],
|
155 |
+
):
|
156 |
+
super().__init__()
|
157 |
+
assert len(fusion_out) == len(convstream_out) + 1
|
158 |
+
|
159 |
+
self.convstream = ConvStream(in_chans = img_chans)
|
160 |
+
self.conv_chans = self.convstream.conv_chans
|
161 |
+
|
162 |
+
self.fusion_blks = nn.ModuleList()
|
163 |
+
self.fus_channs = fusion_out.copy()
|
164 |
+
self.fus_channs.insert(0, in_chans)
|
165 |
+
for i in range(len(self.fus_channs)-1):
|
166 |
+
self.fusion_blks.append(
|
167 |
+
Fusion_Block(
|
168 |
+
in_chans = self.fus_channs[i] + self.conv_chans[-(i+1)],
|
169 |
+
out_chans = self.fus_channs[i+1],
|
170 |
+
)
|
171 |
+
)
|
172 |
+
|
173 |
+
self.matting_head = Matting_Head(
|
174 |
+
in_chans = fusion_out[-1],
|
175 |
+
)
|
176 |
+
|
177 |
+
def forward(self, features, images):
|
178 |
+
detail_features = self.convstream(images)
|
179 |
+
for i in range(len(self.fusion_blks)):
|
180 |
+
d_name_ = 'D'+str(len(self.fusion_blks)-i-1)
|
181 |
+
features = self.fusion_blks[i](features, detail_features[d_name_])
|
182 |
+
|
183 |
+
phas = torch.sigmoid(self.matting_head(features))
|
184 |
+
|
185 |
+
return {'phas': phas}
|
modeling/decoder/unet_detail_capture.py
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
# from nnMorpho.binary_operators import erosion
|
6 |
+
from detectron2.layers.batch_norm import NaiveSyncBatchNorm
|
7 |
+
|
8 |
+
|
9 |
+
class GenTrimapTorch(object):
|
10 |
+
def __init__(self, max_kernal=200):
|
11 |
+
self.max_kernal = max_kernal
|
12 |
+
self.erosion_kernels = [None] + [torch.from_numpy(cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size))).float().cuda() for size in range(1, self.max_kernal)]
|
13 |
+
|
14 |
+
def __call__(self, mask, kernel_size):
|
15 |
+
|
16 |
+
fg_width = kernel_size
|
17 |
+
bg_width = kernel_size
|
18 |
+
|
19 |
+
fg_mask = mask
|
20 |
+
bg_mask = 1 - mask
|
21 |
+
|
22 |
+
fg_mask = erosion(fg_mask, self.erosion_kernels[fg_width], border='a')
|
23 |
+
bg_mask = erosion(bg_mask, self.erosion_kernels[bg_width], border='a')
|
24 |
+
|
25 |
+
trimap = torch.ones_like(mask) * 0.5
|
26 |
+
trimap[fg_mask == 1] = 1.0
|
27 |
+
trimap[bg_mask == 1] = 0.0
|
28 |
+
|
29 |
+
return trimap
|
30 |
+
|
31 |
+
|
32 |
+
class LayerNorm2d(nn.Module):
|
33 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
34 |
+
super().__init__()
|
35 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
36 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
37 |
+
self.eps = eps
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
+
u = x.mean(1, keepdim=True)
|
41 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
42 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
43 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
44 |
+
return x
|
45 |
+
|
46 |
+
|
47 |
+
class BasicDownBlock(nn.Module):
|
48 |
+
def __init__(self, in_channel, out_channel, res = True, norm=LayerNorm2d, block_num=1, kernel_size=3):
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
self.res = res
|
52 |
+
self.basic_layer = nn.ModuleList()
|
53 |
+
for i in range(block_num):
|
54 |
+
if i == 0:
|
55 |
+
basic_layer_in_ch = in_channel
|
56 |
+
stride = 2
|
57 |
+
else:
|
58 |
+
basic_layer_in_ch = out_channel
|
59 |
+
stride = 1
|
60 |
+
self.basic_layer.append(nn.GELU())
|
61 |
+
self.basic_layer.append(nn.Sequential(
|
62 |
+
nn.Conv2d(basic_layer_in_ch, out_channel, kernel_size, stride, kernel_size // 2),
|
63 |
+
norm(out_channel),
|
64 |
+
nn.GELU(),
|
65 |
+
nn.Conv2d(out_channel, out_channel, kernel_size, 1, kernel_size // 2),
|
66 |
+
norm(out_channel),
|
67 |
+
))
|
68 |
+
self.act = nn.GELU()
|
69 |
+
|
70 |
+
if self.res:
|
71 |
+
self.res_layer = nn.Conv2d(in_channel, out_channel, kernel_size, 2, kernel_size // 2)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
|
75 |
+
if self.res:
|
76 |
+
identity = self.res_layer(x)
|
77 |
+
else:
|
78 |
+
identity = F.interpolate(x, size=(out.shape[-2], out.shape[-1]), mode='bilinear', align_corners=False)
|
79 |
+
|
80 |
+
out = x
|
81 |
+
for layer in self.basic_layer:
|
82 |
+
out = layer(out)
|
83 |
+
|
84 |
+
out = out + identity
|
85 |
+
out = self.act(out)
|
86 |
+
|
87 |
+
return out
|
88 |
+
|
89 |
+
|
90 |
+
class BasicUpBlock(nn.Module):
|
91 |
+
|
92 |
+
def __init__( self, in_channel, out_channel, res = True, skip_connect = 'concat', norm=LayerNorm2d, block_num=1, kernel_size=3):
|
93 |
+
super().__init__()
|
94 |
+
assert skip_connect in {'sum', 'concat'}
|
95 |
+
|
96 |
+
self.res = res
|
97 |
+
self.skip_connect = skip_connect
|
98 |
+
self.basic_layer = nn.ModuleList()
|
99 |
+
for i in range(block_num):
|
100 |
+
if i == 0:
|
101 |
+
basic_layer_in_ch = in_channel
|
102 |
+
first_conv = nn.ConvTranspose2d(basic_layer_in_ch, out_channel, 2, 2)
|
103 |
+
else:
|
104 |
+
basic_layer_in_ch = out_channel
|
105 |
+
first_conv = nn.Conv2d(out_channel, out_channel, kernel_size, 1, kernel_size // 2)
|
106 |
+
self.basic_layer.append(nn.GELU())
|
107 |
+
self.basic_layer.append(nn.Sequential(
|
108 |
+
first_conv,
|
109 |
+
norm(out_channel),
|
110 |
+
nn.GELU(),
|
111 |
+
nn.Conv2d(out_channel, out_channel, kernel_size, 1, kernel_size // 2),
|
112 |
+
norm(out_channel),
|
113 |
+
))
|
114 |
+
self.act = nn.GELU()
|
115 |
+
|
116 |
+
if self.res:
|
117 |
+
self.res_layer = nn.Conv2d(in_channel, out_channel, kernel_size, 1, kernel_size // 2)
|
118 |
+
|
119 |
+
|
120 |
+
def forward(self, x, skip_feat, concat_feat=None):
|
121 |
+
|
122 |
+
if self.skip_connect == 'sum':
|
123 |
+
x = x + skip_feat
|
124 |
+
else:
|
125 |
+
x = torch.concat((x, skip_feat), dim=1)
|
126 |
+
|
127 |
+
if concat_feat is not None:
|
128 |
+
x = torch.concat((x, concat_feat), dim=1)
|
129 |
+
|
130 |
+
out = x
|
131 |
+
for layer in self.basic_layer:
|
132 |
+
out = layer(out)
|
133 |
+
# out = self.basic_layer(x)
|
134 |
+
|
135 |
+
identity = F.interpolate(x, size=(out.shape[-2], out.shape[-1]), mode='bilinear', align_corners=False)
|
136 |
+
if self.res:
|
137 |
+
identity = self.res_layer(identity)
|
138 |
+
|
139 |
+
out = out + identity
|
140 |
+
out = self.act(out)
|
141 |
+
|
142 |
+
return out
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
class DetailUNet(nn.Module):
|
147 |
+
def __init__(
|
148 |
+
self,
|
149 |
+
img_feat_in = 4,
|
150 |
+
vit_early_feat_in = 768,
|
151 |
+
matting_feat_in = 5,
|
152 |
+
downsample_in_out = [(4, 32), (32, 64), (64, 128), (128, 256)],
|
153 |
+
upsample_in_out = [(256, 128), (128, 64), (64, 32), (32, 16)],
|
154 |
+
matting_head_in = 16,
|
155 |
+
skip_connect = 'sum',
|
156 |
+
norm_type = 'LN',
|
157 |
+
):
|
158 |
+
super().__init__()
|
159 |
+
|
160 |
+
assert len(downsample_in_out) == len(upsample_in_out)
|
161 |
+
downsample_in_out[0] = (img_feat_in, downsample_in_out[0][1])
|
162 |
+
|
163 |
+
assert norm_type in {'BN', 'LN', 'SyncBN'}
|
164 |
+
if norm_type == 'BN':
|
165 |
+
self.norm = torch.nn.BatchNorm2d
|
166 |
+
elif norm_type == 'SyncBN':
|
167 |
+
self.norm = NaiveSyncBatchNorm
|
168 |
+
else:
|
169 |
+
self.norm = LayerNorm2d
|
170 |
+
|
171 |
+
self.down_blks = nn.ModuleList()
|
172 |
+
for in_ch, out_ch in downsample_in_out:
|
173 |
+
self.down_blks.append(
|
174 |
+
BasicDownBlock(in_ch, out_ch, norm=self.norm)
|
175 |
+
)
|
176 |
+
|
177 |
+
self.mid_layer = nn.Sequential(
|
178 |
+
nn.Conv2d(vit_early_feat_in, downsample_in_out[-1][1], 1, 1),
|
179 |
+
self.norm(downsample_in_out[-1][1]),
|
180 |
+
nn.GELU(),
|
181 |
+
)
|
182 |
+
|
183 |
+
self.up_blks = nn.ModuleList()
|
184 |
+
for i, (in_ch, out_ch) in enumerate(upsample_in_out):
|
185 |
+
if i == 2:
|
186 |
+
in_ch += matting_feat_in
|
187 |
+
self.up_blks.append(
|
188 |
+
BasicUpBlock(in_ch, out_ch, skip_connect=skip_connect, norm=self.norm)
|
189 |
+
)
|
190 |
+
|
191 |
+
self.matting_head = nn.Conv2d(matting_head_in, 1, 3, 1, 1)
|
192 |
+
|
193 |
+
|
194 |
+
def forward(self, x, vit_early_feat, matting_feat, return_alpha_logits=False):
|
195 |
+
details = []
|
196 |
+
dfeatures = x
|
197 |
+
|
198 |
+
for i in range(len(self.down_blks)):
|
199 |
+
dfeatures = self.down_blks[i](dfeatures)
|
200 |
+
details.append(dfeatures)
|
201 |
+
|
202 |
+
out = self.mid_layer(vit_early_feat)
|
203 |
+
for i in range(len(self.up_blks)):
|
204 |
+
if i == 2:
|
205 |
+
out = self.up_blks[i](out, details[-i - 1], matting_feat)
|
206 |
+
else:
|
207 |
+
out = self.up_blks[i](out, details[-i - 1])
|
208 |
+
alpha = self.matting_head(out)
|
209 |
+
if return_alpha_logits:
|
210 |
+
return alpha, out
|
211 |
+
else:
|
212 |
+
return alpha
|
213 |
+
|
214 |
+
|
215 |
+
class MattingDetailDecoder(nn.Module):
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
img_feat_in = 4,
|
219 |
+
vit_intern_feat_in = 1024,
|
220 |
+
vit_intern_feat_index = [0, 1, 2, 3],
|
221 |
+
downsample_in_out = [(4, 32), (32, 64), (64, 128), (128, 256)],
|
222 |
+
upsample_in_out = [(256, 128), (128, 64), (64, 32), (32, 16)],
|
223 |
+
matting_head_in = 16,
|
224 |
+
skip_connect = 'sum',
|
225 |
+
norm_type = 'BN',
|
226 |
+
norm_mask_logits = 6.5,
|
227 |
+
with_trimap = False,
|
228 |
+
min_kernel_size = 20,
|
229 |
+
kernel_div = 10,
|
230 |
+
concat_gen_trimap = False,
|
231 |
+
wo_hq_features = False,
|
232 |
+
block_num = 1,
|
233 |
+
wo_big_kernel = False,
|
234 |
+
sam2_multi_scale_feates = False,
|
235 |
+
):
|
236 |
+
super().__init__()
|
237 |
+
|
238 |
+
assert len(downsample_in_out) == len(upsample_in_out)
|
239 |
+
assert skip_connect in {'sum', 'concat'}
|
240 |
+
downsample_in_out[0] = (img_feat_in, downsample_in_out[0][1])
|
241 |
+
|
242 |
+
self.vit_intern_feat_in = vit_intern_feat_in
|
243 |
+
self.vit_intern_feat_index = vit_intern_feat_index
|
244 |
+
self.norm_mask_logits = norm_mask_logits
|
245 |
+
self.with_trimap = with_trimap
|
246 |
+
self.min_kernel_size = min_kernel_size
|
247 |
+
self.kernel_div = kernel_div
|
248 |
+
self.concat_gen_trimap = concat_gen_trimap
|
249 |
+
self.wo_hq_features = wo_hq_features
|
250 |
+
self.block_num = block_num
|
251 |
+
self.wo_big_kernel = wo_big_kernel
|
252 |
+
self.sam2_multi_scale_feates = sam2_multi_scale_feates
|
253 |
+
if self.sam2_multi_scale_feates:
|
254 |
+
assert downsample_in_out[0][0] == 6
|
255 |
+
downsample_in_out = [(4, 32), (32, 64), (64 + 32, 128), (128 + 64, 256)]
|
256 |
+
upsample_in_out = [(256, 128), (128, 64), (64, 32), (32, 16)]
|
257 |
+
|
258 |
+
if self.with_trimap and not self.concat_gen_trimap:
|
259 |
+
self.gen_trimap = GenTrimapTorch()
|
260 |
+
assert norm_type in {'BN', 'LN', 'SyncBN'}
|
261 |
+
if norm_type == 'BN':
|
262 |
+
self.norm = torch.nn.BatchNorm2d
|
263 |
+
elif norm_type == 'SyncBN':
|
264 |
+
self.norm = NaiveSyncBatchNorm
|
265 |
+
else:
|
266 |
+
self.norm = LayerNorm2d
|
267 |
+
|
268 |
+
if self.block_num >= 2 and not self.wo_big_kernel:
|
269 |
+
self.big_kernel_process = nn.Sequential(
|
270 |
+
nn.Conv2d(img_feat_in, 16, kernel_size=13, stride=1, padding=6),
|
271 |
+
self.norm(16),
|
272 |
+
nn.GELU(),
|
273 |
+
nn.Conv2d(16, 32, kernel_size=13, stride=1, padding=6),
|
274 |
+
self.norm(32),
|
275 |
+
nn.GELU(),
|
276 |
+
)
|
277 |
+
downsample_in_out[0] = (32, downsample_in_out[0][1])
|
278 |
+
|
279 |
+
if not self.sam2_multi_scale_feates:
|
280 |
+
self.vit_feat_proj = nn.ModuleDict()
|
281 |
+
for idx in self.vit_intern_feat_index:
|
282 |
+
self.vit_feat_proj[str(idx)] = nn.Conv2d(self.vit_intern_feat_in, self.vit_intern_feat_in // len(self.vit_intern_feat_index), 1, 1)
|
283 |
+
self.vit_feat_aggregation = nn.Sequential(
|
284 |
+
nn.Conv2d(self.vit_intern_feat_in // len(self.vit_intern_feat_index) * len(self.vit_intern_feat_index), downsample_in_out[-1][1], 3, 1, 1),
|
285 |
+
self.norm(downsample_in_out[-1][1]),
|
286 |
+
nn.GELU(),
|
287 |
+
)
|
288 |
+
|
289 |
+
self.down_blks = nn.ModuleList()
|
290 |
+
for in_ch, out_ch in downsample_in_out:
|
291 |
+
self.down_blks.append(
|
292 |
+
BasicDownBlock(in_ch, out_ch, norm=self.norm, block_num=self.block_num, kernel_size=5 if self.block_num >= 2 else 3)
|
293 |
+
)
|
294 |
+
|
295 |
+
if self.sam2_multi_scale_feates:
|
296 |
+
self.mid_layer = nn.ModuleList([
|
297 |
+
nn.Sequential(
|
298 |
+
nn.Conv2d(32, 32, 1, 1),
|
299 |
+
self.norm(32),
|
300 |
+
nn.GELU(),
|
301 |
+
),
|
302 |
+
nn.Sequential(
|
303 |
+
nn.Conv2d(64, 64, 1, 1),
|
304 |
+
self.norm(64),
|
305 |
+
nn.GELU(),
|
306 |
+
),
|
307 |
+
nn.Sequential(
|
308 |
+
nn.Conv2d(256, 256, 1, 1),
|
309 |
+
self.norm(256),
|
310 |
+
nn.GELU(),
|
311 |
+
),
|
312 |
+
nn.Sequential(
|
313 |
+
nn.Conv2d(512, 256, 3, 1, 1),
|
314 |
+
self.norm(256),
|
315 |
+
nn.GELU(),
|
316 |
+
),
|
317 |
+
])
|
318 |
+
else:
|
319 |
+
self.mid_layer = nn.Sequential(
|
320 |
+
nn.Conv2d(downsample_in_out[-1][1] * 2, downsample_in_out[-1][1], 1, 1),
|
321 |
+
self.norm(downsample_in_out[-1][1]),
|
322 |
+
nn.GELU(),
|
323 |
+
)
|
324 |
+
|
325 |
+
self.up_blks = nn.ModuleList()
|
326 |
+
for _, (in_ch, out_ch) in enumerate(upsample_in_out):
|
327 |
+
if skip_connect == 'concat':
|
328 |
+
self.up_blks.append(BasicUpBlock(in_ch * 2, out_ch, skip_connect=skip_connect, norm=self.norm, block_num=self.block_num))
|
329 |
+
else:
|
330 |
+
self.up_blks.append(BasicUpBlock(in_ch, out_ch, skip_connect=skip_connect, norm=self.norm, block_num=self.block_num))
|
331 |
+
|
332 |
+
self.matting_head = nn.Conv2d(matting_head_in, 1, 3, 1, 1)
|
333 |
+
|
334 |
+
if self.norm_mask_logits == 'BN':
|
335 |
+
self.logits_norm = self.norm(1)
|
336 |
+
|
337 |
+
|
338 |
+
def preprocess_inputs(self, images, hq_features, pred_trimap):
|
339 |
+
|
340 |
+
if self.wo_hq_features:
|
341 |
+
return images
|
342 |
+
|
343 |
+
if isinstance(self.norm_mask_logits, float):
|
344 |
+
norm_hq_features = hq_features / self.norm_mask_logits
|
345 |
+
elif self.norm_mask_logits == 'BN':
|
346 |
+
norm_hq_features = self.logits_norm(hq_features)
|
347 |
+
elif self.norm_mask_logits == 'Sigmoid':
|
348 |
+
if hq_features.shape[1] == 1:
|
349 |
+
norm_hq_features = torch.sigmoid(hq_features)
|
350 |
+
else:
|
351 |
+
norm_hq_features = torch.softmax(hq_features, dim=1)
|
352 |
+
elif self.norm_mask_logits:
|
353 |
+
norm_hq_features = hq_features / torch.std(hq_features, dim=(1, 2, 3), keepdim=True)
|
354 |
+
else:
|
355 |
+
norm_hq_features = hq_features
|
356 |
+
|
357 |
+
if self.concat_gen_trimap:
|
358 |
+
pred_trimap = F.interpolate(pred_trimap, size=(images.shape[-2], images.shape[-1]), mode='bilinear', align_corners=False)
|
359 |
+
pred_trimap = torch.argmax(pred_trimap, dim=1, keepdim=True).float() / 2.0
|
360 |
+
norm_hq_features = torch.concat((norm_hq_features, pred_trimap.detach()), dim=1)
|
361 |
+
elif self.with_trimap:
|
362 |
+
mask = (norm_hq_features > 0).float()
|
363 |
+
for i_batch in range(images.shape[0]):
|
364 |
+
mask_area = torch.sum(mask[i_batch])
|
365 |
+
kernel_size = max(self.min_kernel_size, int((mask_area ** 0.5) / self.kernel_div))
|
366 |
+
kernel_size = min(kernel_size, self.gen_trimap.max_kernal - 1)
|
367 |
+
mask[i_batch, 0] = self.gen_trimap(mask[i_batch, 0], kernel_size=kernel_size)
|
368 |
+
trimaps = mask
|
369 |
+
norm_hq_features = torch.concat((norm_hq_features, trimaps), dim=1)
|
370 |
+
|
371 |
+
conditional_images = torch.concatenate((images, norm_hq_features), dim=1)
|
372 |
+
return conditional_images
|
373 |
+
|
374 |
+
def forward(self, images, hq_features, vit_intern_feat, return_alpha_logits=False, pred_trimap=None):
|
375 |
+
|
376 |
+
condition_input = self.preprocess_inputs(images, hq_features, pred_trimap)
|
377 |
+
|
378 |
+
if not self.sam2_multi_scale_feates:
|
379 |
+
# aggregate 4 vit_intern_feat
|
380 |
+
# assert len(vit_intern_feat) == self.vit_intern_feat_num
|
381 |
+
vit_feats = []
|
382 |
+
for idx in self.vit_intern_feat_index:
|
383 |
+
vit_feats.append(self.vit_feat_proj[str(idx)](vit_intern_feat[idx].permute(0, 3, 1, 2)))
|
384 |
+
vit_feats = torch.concat(vit_feats, dim=1)
|
385 |
+
vit_aggregation_feats = self.vit_feat_aggregation(vit_feats)
|
386 |
+
|
387 |
+
details = []
|
388 |
+
dfeatures = condition_input
|
389 |
+
|
390 |
+
if hasattr(self, 'big_kernel_process'):
|
391 |
+
dfeatures = self.big_kernel_process(dfeatures)
|
392 |
+
|
393 |
+
for i in range(len(self.down_blks)):
|
394 |
+
if self.sam2_multi_scale_feates:
|
395 |
+
if i == 2:
|
396 |
+
dfeatures = torch.concat((dfeatures, self.mid_layer[0](vit_intern_feat['high_res_feats'][0])), dim=1)
|
397 |
+
elif i == 3:
|
398 |
+
dfeatures = torch.concat((dfeatures, self.mid_layer[1](vit_intern_feat['high_res_feats'][1])), dim=1)
|
399 |
+
dfeatures = self.down_blks[i](dfeatures)
|
400 |
+
details.append(dfeatures)
|
401 |
+
|
402 |
+
if self.sam2_multi_scale_feates:
|
403 |
+
out = torch.concat((details[-1], self.mid_layer[2](vit_intern_feat['image_embed'])), dim=1)
|
404 |
+
out = self.mid_layer[3](out)
|
405 |
+
else:
|
406 |
+
out = self.mid_layer(torch.concat((details[-1], vit_aggregation_feats), dim=1))
|
407 |
+
for i in range(len(self.up_blks)):
|
408 |
+
out = self.up_blks[i](out, details[-i - 1])
|
409 |
+
alpha = torch.sigmoid(self.matting_head(out))
|
410 |
+
if return_alpha_logits:
|
411 |
+
return alpha, out
|
412 |
+
else:
|
413 |
+
return alpha
|
414 |
+
|
415 |
+
|
416 |
+
|
417 |
+
if __name__ == '__main__':
|
418 |
+
|
419 |
+
from engine.mattingtrainer import parameter_count_table
|
420 |
+
|
421 |
+
model = MattingDetailDecoder(img_feat_in = 5, vit_intern_feat_index=[0])
|
422 |
+
x = torch.randn((2, 5, 1024, 1024))
|
423 |
+
hq_features = torch.randn((2, 1, 1024, 1024))
|
424 |
+
vit_feat = [torch.randn((2, 64, 64, 1024)) for _ in range(4)]
|
425 |
+
|
426 |
+
out = model(x, hq_features, vit_feat)
|
427 |
+
print(out.shape)
|
428 |
+
|
429 |
+
print("Trainable parameters: \n" + parameter_count_table(model, trainable_only=True, max_depth=5))
|
modeling/meta_arch/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .sam_hq_matting import SamHqMatte
|
modeling/meta_arch/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (208 Bytes). View file
|
|
modeling/meta_arch/__pycache__/sam_hq_matting.cpython-38.pyc
ADDED
Binary file (18.2 kB). View file
|
|
modeling/meta_arch/sam_hq_matting.py
ADDED
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchvision
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
from copy import deepcopy
|
9 |
+
from collections import defaultdict
|
10 |
+
|
11 |
+
from detectron2.structures import ImageList
|
12 |
+
from detectron2.utils.comm import get_local_rank
|
13 |
+
from modeling.semantic_enhanced_matting.predictor import SamPredictor
|
14 |
+
from modeling.semantic_enhanced_matting.condition_conv import ConditionConv, ConditionEmbedding, ConditionAdd, BBoxEmbedInteract, BBoxInteract, BBoxInteractInOut
|
15 |
+
from modeling.semantic_enhanced_matting.modeling.image_encoder import PatchEmbed
|
16 |
+
from modeling.semantic_enhanced_matting.modeling.common import LayerNorm2d
|
17 |
+
from modeling.decoder.unet_detail_capture import MattingDetailDecoder
|
18 |
+
from modeling.semantic_enhanced_matting.feature_fusion import FeatureFusion
|
19 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
20 |
+
|
21 |
+
from modeling.semantic_enhanced_matting.modeling.mask_decoder_hq_matting import MaskDecoderHQMatting
|
22 |
+
from modeling.semantic_enhanced_matting.modeling import TwoWayTransformer
|
23 |
+
|
24 |
+
from peft import LoraConfig, get_peft_model
|
25 |
+
from peft.tuners.lora.layer import LoraLayer
|
26 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
27 |
+
|
28 |
+
from data.rand_augment import RandAugment
|
29 |
+
import random
|
30 |
+
import kornia.filters as kf
|
31 |
+
|
32 |
+
|
33 |
+
class SamHqMatte(nn.Module):
|
34 |
+
|
35 |
+
target_length = 1024
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
*,
|
40 |
+
sam_model,
|
41 |
+
hq_token_only,
|
42 |
+
hq_features_type,
|
43 |
+
matting_decoder,
|
44 |
+
criterion,
|
45 |
+
pixel_mean,
|
46 |
+
pixel_std,
|
47 |
+
multimask_output=False,
|
48 |
+
vis_period=None,
|
49 |
+
output_dir=None,
|
50 |
+
lora_rank = None,
|
51 |
+
lora_alpha = None,
|
52 |
+
lora_target_modules = ["qkv", "proj"],
|
53 |
+
lora_dropout = 0.1,
|
54 |
+
w_dora = False,
|
55 |
+
w_rslora = False,
|
56 |
+
lora_on_mask_decoder = False,
|
57 |
+
frozen_sam_hq_reg = None,
|
58 |
+
reg_margin = 0.85,
|
59 |
+
w_attention_mask = False,
|
60 |
+
alpha_reg_range = None,
|
61 |
+
alpha_reg_weight = 1.0,
|
62 |
+
coconut_pl = False,
|
63 |
+
coconut_pl_alpha = 1.0,
|
64 |
+
coconut_self_training = False,
|
65 |
+
eval_w_sam_hq_mask = False,
|
66 |
+
backbone_condition = False,
|
67 |
+
condition_wo_conv = False,
|
68 |
+
w_only_bbox_cond = False,
|
69 |
+
coconut_only_known_l1 = False,
|
70 |
+
backbone_bbox_prompt = None,
|
71 |
+
backbone_bbox_prompt_loc = [2, 3],
|
72 |
+
backbone_bbox_prompt_loss_weight = 1.0,
|
73 |
+
concat_gen_trimap = False,
|
74 |
+
multi_matting_decoder = None,
|
75 |
+
w_all_logits = False,
|
76 |
+
bbox_prompt_all_block = None,
|
77 |
+
matting_token = False,
|
78 |
+
test_w_hq_token = False,
|
79 |
+
sam_hq_token_reg = None,
|
80 |
+
feat_cross_attn_fusion = False,
|
81 |
+
trimap_loss_type = None,
|
82 |
+
reg_on_sam_logits = False,
|
83 |
+
reg_w_bce_loss = False,
|
84 |
+
complex_trimap_pred_layer = False,
|
85 |
+
matting_token_sup = None,
|
86 |
+
matting_token_sup_loss_weight = None,
|
87 |
+
sam2 = False,
|
88 |
+
):
|
89 |
+
super(SamHqMatte, self).__init__()
|
90 |
+
|
91 |
+
self.sam_model = sam_model
|
92 |
+
self.sam_predictor = SamPredictor(self.sam_model) if not sam2 else SAM2ImagePredictor(self.sam_model) # already in eval mode and no_grad
|
93 |
+
self.hq_token_only = hq_token_only
|
94 |
+
self.multimask_output = multimask_output
|
95 |
+
self.hq_features_type = hq_features_type
|
96 |
+
|
97 |
+
self.matting_decoder = matting_decoder
|
98 |
+
|
99 |
+
self.criterion = criterion
|
100 |
+
|
101 |
+
self.register_buffer(
|
102 |
+
"pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False
|
103 |
+
)
|
104 |
+
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
|
105 |
+
assert (
|
106 |
+
self.pixel_mean.shape == self.pixel_std.shape
|
107 |
+
), f"{self.pixel_mean} and {self.pixel_std} have different shapes!"
|
108 |
+
|
109 |
+
self.vis_period = vis_period
|
110 |
+
if output_dir is not None and output_dir != '?':
|
111 |
+
self.output_dir = os.path.join(output_dir, 'vis_results')
|
112 |
+
os.makedirs(self.output_dir, exist_ok=True)
|
113 |
+
self.train_iter_index = 0
|
114 |
+
|
115 |
+
self.lora_rank = lora_rank
|
116 |
+
self.lora_alpha = lora_alpha
|
117 |
+
self.lora_target_modules = lora_target_modules
|
118 |
+
self.lora_dropout = lora_dropout
|
119 |
+
self.w_dora = w_dora
|
120 |
+
self.w_rslora = w_rslora
|
121 |
+
self.lora_on_mask_decoder = lora_on_mask_decoder
|
122 |
+
self.frozen_sam_hq_reg = frozen_sam_hq_reg
|
123 |
+
self.reg_margin = reg_margin
|
124 |
+
self.w_attention_mask = w_attention_mask
|
125 |
+
self.alpha_reg_range = alpha_reg_range
|
126 |
+
self.alpha_reg_weight = alpha_reg_weight
|
127 |
+
self.coconut_pl = coconut_pl
|
128 |
+
self.coconut_pl_alpha = coconut_pl_alpha
|
129 |
+
self.coconut_self_training = coconut_self_training
|
130 |
+
self.eval_w_sam_hq_mask = eval_w_sam_hq_mask
|
131 |
+
self.backbone_condition = backbone_condition
|
132 |
+
self.condition_wo_conv = condition_wo_conv
|
133 |
+
self.w_only_bbox_cond = w_only_bbox_cond
|
134 |
+
self.coconut_only_known_l1 = coconut_only_known_l1
|
135 |
+
self.backbone_bbox_prompt = backbone_bbox_prompt
|
136 |
+
self.backbone_bbox_prompt_loc = backbone_bbox_prompt_loc
|
137 |
+
self.backbone_bbox_prompt_loss_weight = backbone_bbox_prompt_loss_weight
|
138 |
+
self.concat_gen_trimap = concat_gen_trimap
|
139 |
+
self.multi_matting_decoder = multi_matting_decoder
|
140 |
+
self.w_all_logits = w_all_logits
|
141 |
+
self.bbox_prompt_all_block = bbox_prompt_all_block
|
142 |
+
self.matting_token = matting_token
|
143 |
+
self.test_w_hq_token = test_w_hq_token
|
144 |
+
self.sam_hq_token_reg = sam_hq_token_reg
|
145 |
+
self.feat_cross_attn_fusion = feat_cross_attn_fusion
|
146 |
+
self.trimap_loss_type = trimap_loss_type
|
147 |
+
self.reg_on_sam_logits = reg_on_sam_logits
|
148 |
+
self.reg_w_bce_loss = reg_w_bce_loss
|
149 |
+
self.complex_trimap_pred_layer = complex_trimap_pred_layer
|
150 |
+
self.matting_token_sup = matting_token_sup
|
151 |
+
self.sam2 = sam2
|
152 |
+
assert self.matting_token_sup in {'alpha', 'trimap', None}
|
153 |
+
self.matting_token_sup_loss_weight = matting_token_sup_loss_weight
|
154 |
+
if self.matting_token_sup is not None:
|
155 |
+
assert self.backbone_bbox_prompt in {'bbox', None}
|
156 |
+
if self.frozen_sam_hq_reg is not None:
|
157 |
+
assert self.lora_rank is not None
|
158 |
+
if self.w_attention_mask:
|
159 |
+
self.attention_head = deepcopy(self.matting_decoder)
|
160 |
+
if self.coconut_self_training:
|
161 |
+
self.rand_aug = RandAugment(3,6)
|
162 |
+
self.warm_iter_coconut_self_training = 5000
|
163 |
+
if self.backbone_condition:
|
164 |
+
assert self.lora_rank is not None
|
165 |
+
if self.backbone_bbox_prompt is not None:
|
166 |
+
assert self.lora_rank is not None
|
167 |
+
if self.w_all_logits:
|
168 |
+
self.sam_predictor.model.mask_decoder.w_all_logits = True
|
169 |
+
if self.bbox_prompt_all_block:
|
170 |
+
assert self.lora_rank is not None
|
171 |
+
if self.matting_token and not self.sam2:
|
172 |
+
self.sam_predictor.model.mask_decoder.hq_token_only = self.hq_token_only
|
173 |
+
|
174 |
+
@property
|
175 |
+
def device(self):
|
176 |
+
return self.pixel_mean.device
|
177 |
+
|
178 |
+
def init_lora(self, model=None):
|
179 |
+
if model is not None and self.lora_rank >= 1:
|
180 |
+
if self.lora_on_mask_decoder:
|
181 |
+
self.lora_target_modules += ["q_proj", "k_proj", "v_proj", "out_proj"]
|
182 |
+
modules_to_save = None
|
183 |
+
else:
|
184 |
+
modules_to_save = ['matting_decoder']
|
185 |
+
|
186 |
+
lora_config = LoraConfig(
|
187 |
+
r=self.lora_rank,
|
188 |
+
lora_alpha=self.lora_alpha,
|
189 |
+
use_rslora=self.w_rslora,
|
190 |
+
use_dora=self.w_dora,
|
191 |
+
init_lora_weights="gaussian",
|
192 |
+
target_modules=self.lora_target_modules,
|
193 |
+
lora_dropout=self.lora_dropout,
|
194 |
+
modules_to_save=modules_to_save
|
195 |
+
)
|
196 |
+
model = get_peft_model(model, lora_config)
|
197 |
+
if self.lora_on_mask_decoder:
|
198 |
+
for n, p in model.matting_decoder.named_parameters():
|
199 |
+
if n.split('modules_to_save.default.')[-1] in model.matting_decoder.trainable_params_str:
|
200 |
+
p.requires_grad = True
|
201 |
+
else:
|
202 |
+
for n, p in model.matting_decoder.named_parameters():
|
203 |
+
if n.split('modules_to_save.default.')[-1] in model.matting_decoder.frozen_params_str:
|
204 |
+
p.requires_grad = False
|
205 |
+
return model
|
206 |
+
elif self.lora_rank >= 1:
|
207 |
+
lora_config = LoraConfig(
|
208 |
+
r=self.lora_rank,
|
209 |
+
lora_alpha=self.lora_alpha,
|
210 |
+
use_rslora=self.w_rslora,
|
211 |
+
use_dora=self.w_dora,
|
212 |
+
init_lora_weights="gaussian",
|
213 |
+
target_modules=self.lora_target_modules,
|
214 |
+
lora_dropout=self.lora_dropout,
|
215 |
+
)
|
216 |
+
self.sam_predictor.model.image_encoder = get_peft_model(self.sam_predictor.model.image_encoder, lora_config)
|
217 |
+
|
218 |
+
if self.sam2:
|
219 |
+
for n, p in self.sam_predictor.model.image_encoder.named_parameters():
|
220 |
+
if 'bbox_mask' in n:
|
221 |
+
p.requires_grad = True
|
222 |
+
|
223 |
+
if self.backbone_condition:
|
224 |
+
if self.w_only_bbox_cond:
|
225 |
+
self.condition_embedding = ConditionEmbedding(condition_num = 4, pos_embedding_dim = 160)
|
226 |
+
else:
|
227 |
+
self.condition_embedding = ConditionEmbedding(condition_num = 5, pos_embedding_dim = 128)
|
228 |
+
|
229 |
+
if self.condition_wo_conv:
|
230 |
+
self.condition_conv = nn.ModuleList([ConditionAdd() for _ in range(4)])
|
231 |
+
else:
|
232 |
+
self.condition_conv = nn.ModuleList([ConditionConv(
|
233 |
+
in_channels = self.sam_predictor.model.image_encoder.embed_dim,
|
234 |
+
out_channels = self.sam_predictor.model.image_encoder.embed_dim,
|
235 |
+
bottleneck_channels = 512
|
236 |
+
) for _ in range(4)])
|
237 |
+
|
238 |
+
if self.backbone_bbox_prompt is not None and not self.sam2:
|
239 |
+
self.condition_layer = nn.ModuleDict()
|
240 |
+
self.condition_layer['patch_embed'] = PatchEmbed(
|
241 |
+
kernel_size=(self.sam_predictor.model.image_encoder.patch_size, self.sam_predictor.model.image_encoder.patch_size),
|
242 |
+
stride=(self.sam_predictor.model.image_encoder.patch_size, self.sam_predictor.model.image_encoder.patch_size),
|
243 |
+
in_chans=4,
|
244 |
+
embed_dim=self.sam_predictor.model.image_encoder.embed_dim,
|
245 |
+
)
|
246 |
+
if self.multi_matting_decoder is None:
|
247 |
+
if self.backbone_bbox_prompt in {'trimap', 'alpha_trimap'}:
|
248 |
+
transformer_dim = self.sam_predictor.model.image_encoder.embed_dim
|
249 |
+
for i in self.backbone_bbox_prompt_loc:
|
250 |
+
if self.complex_trimap_pred_layer:
|
251 |
+
self.condition_layer['{}_pred_layer'.format(i)] = nn.Sequential(
|
252 |
+
nn.ConvTranspose2d(transformer_dim, transformer_dim // 2, kernel_size=2, stride=2),
|
253 |
+
LayerNorm2d(transformer_dim // 2), # 512
|
254 |
+
nn.GELU(),
|
255 |
+
nn.Conv2d(transformer_dim // 2, transformer_dim // 4, kernel_size=3, stride=1, padding=1),
|
256 |
+
LayerNorm2d(transformer_dim // 4), # 256
|
257 |
+
nn.GELU(),
|
258 |
+
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
259 |
+
LayerNorm2d(transformer_dim // 8), # 128
|
260 |
+
nn.GELU(),
|
261 |
+
nn.Conv2d(transformer_dim // 8, transformer_dim // 16, kernel_size=3, stride=1, padding=1),
|
262 |
+
LayerNorm2d(transformer_dim // 16), # 64
|
263 |
+
nn.GELU(),
|
264 |
+
nn.Conv2d(transformer_dim // 16, 3, kernel_size=3, stride=1, padding=1),
|
265 |
+
)
|
266 |
+
else:
|
267 |
+
self.condition_layer['{}_pred_layer'.format(i)] = nn.Sequential(
|
268 |
+
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
269 |
+
LayerNorm2d(transformer_dim // 4),
|
270 |
+
nn.GELU(),
|
271 |
+
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
272 |
+
nn.GELU(),
|
273 |
+
nn.Conv2d(transformer_dim // 8, 3, kernel_size=1, stride=1),
|
274 |
+
)
|
275 |
+
elif self.backbone_bbox_prompt == 'alpha':
|
276 |
+
transformer_dim = self.sam_predictor.model.image_encoder.embed_dim
|
277 |
+
for i in self.backbone_bbox_prompt_loc:
|
278 |
+
if self.complex_trimap_pred_layer:
|
279 |
+
self.condition_layer['{}_pred_layer'.format(i)] = nn.Sequential(
|
280 |
+
nn.ConvTranspose2d(transformer_dim, transformer_dim // 2, kernel_size=2, stride=2),
|
281 |
+
LayerNorm2d(transformer_dim // 2), # 512
|
282 |
+
nn.GELU(),
|
283 |
+
nn.Conv2d(transformer_dim // 2, transformer_dim // 4, kernel_size=3, stride=1, padding=1),
|
284 |
+
LayerNorm2d(transformer_dim // 4), # 256
|
285 |
+
nn.GELU(),
|
286 |
+
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
287 |
+
LayerNorm2d(transformer_dim // 8), # 128
|
288 |
+
nn.GELU(),
|
289 |
+
nn.Conv2d(transformer_dim // 8, transformer_dim // 16, kernel_size=3, stride=1, padding=1),
|
290 |
+
LayerNorm2d(transformer_dim // 16), # 64
|
291 |
+
nn.GELU(),
|
292 |
+
nn.Conv2d(transformer_dim // 16, 1, kernel_size=3, stride=1, padding=1),
|
293 |
+
nn.Sigmoid()
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
self.condition_layer['{}_pred_layer'.format(i)] = nn.Sequential(
|
297 |
+
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
298 |
+
LayerNorm2d(transformer_dim // 4),
|
299 |
+
nn.GELU(),
|
300 |
+
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
301 |
+
nn.GELU(),
|
302 |
+
nn.Conv2d(transformer_dim // 8, 1, kernel_size=1, stride=1),
|
303 |
+
nn.Sigmoid()
|
304 |
+
)
|
305 |
+
if self.bbox_prompt_all_block is not None:
|
306 |
+
if self.bbox_prompt_all_block == 'reuse_cross-self-attn':
|
307 |
+
self.condition_layer['prompt_layer'] = BBoxInteract(
|
308 |
+
position_point_embedding = deepcopy(self.sam_predictor.model.prompt_encoder.pe_layer),
|
309 |
+
point_weight = deepcopy(self.sam_predictor.model.prompt_encoder.point_embeddings)
|
310 |
+
)
|
311 |
+
elif self.bbox_prompt_all_block == 'in-out-bbox_cross-self-attn':
|
312 |
+
self.condition_layer['prompt_layer'] = BBoxInteractInOut(downsample_rate = 2)
|
313 |
+
else:
|
314 |
+
embed_type, interact_type = self.bbox_prompt_all_block.split('_')
|
315 |
+
self.condition_layer['prompt_layer'] = BBoxEmbedInteract(embed_type, interact_type)
|
316 |
+
|
317 |
+
if self.feat_cross_attn_fusion:
|
318 |
+
self.condition_layer['feature_fusion'] = FeatureFusion(in_channels=self.sam_predictor.model.image_encoder.embed_dim, attn_compression_ratio=8)
|
319 |
+
|
320 |
+
def condition_bbox_and_instance_num(self):
|
321 |
+
self.sam_predictor.model.image_encoder.conv_necks = None
|
322 |
+
|
323 |
+
def forward_samhq_and_matting_decoder(self, images, bbox, condition_proj=None, return_hq_token=False):
|
324 |
+
# get features from SAM image encoder
|
325 |
+
if self.sam2:
|
326 |
+
interm_features, sam2_logits, matting_logits, pred_trimap = self.forward_samhq(images, bbox, condition_proj)
|
327 |
+
sam2_logits = F.interpolate(sam2_logits, size=images.shape[-2:], mode='bilinear', align_corners=False)
|
328 |
+
matting_logits = F.interpolate(matting_logits, size=images.shape[-2:], mode='bilinear', align_corners=False)
|
329 |
+
sam_hq_matting_token = {
|
330 |
+
'masks_hq': sam2_logits,
|
331 |
+
'masks_matting': matting_logits
|
332 |
+
}
|
333 |
+
hq_features = matting_logits
|
334 |
+
low_res_masks = matting_logits
|
335 |
+
else:
|
336 |
+
if self.matting_token:
|
337 |
+
features, image_pe, sparse_embeddings, dense_embeddings, interm_features, sam_hq_matting_token, pred_trimap = self.forward_samhq(images, bbox, condition_proj)
|
338 |
+
if return_hq_token:
|
339 |
+
return sam_hq_matting_token['masks_hq']
|
340 |
+
else:
|
341 |
+
if not self.training and self.test_w_hq_token:
|
342 |
+
low_res_masks, hq_features = sam_hq_matting_token['masks_hq'], sam_hq_matting_token['masks_hq']
|
343 |
+
else:
|
344 |
+
low_res_masks, hq_features = sam_hq_matting_token['masks_matting'], sam_hq_matting_token['masks_matting']
|
345 |
+
else:
|
346 |
+
features, image_pe, sparse_embeddings, dense_embeddings, interm_features, hq_features, sam_logits, low_res_masks, pred_trimap = self.forward_samhq(images, bbox, condition_proj)
|
347 |
+
if return_hq_token:
|
348 |
+
return hq_features
|
349 |
+
sam_hq_matting_token = {'masks_hq': hq_features, 'masks_sam': sam_logits}
|
350 |
+
|
351 |
+
# get alpha from our proposed matting_decoder
|
352 |
+
if isinstance(self.matting_decoder, MattingDetailDecoder):
|
353 |
+
pred_alpha = self.matting_decoder(
|
354 |
+
images = images,
|
355 |
+
hq_features = hq_features,
|
356 |
+
vit_intern_feat = interm_features,
|
357 |
+
return_alpha_logits = (self.alpha_reg_range is not None),
|
358 |
+
pred_trimap = pred_trimap
|
359 |
+
)
|
360 |
+
else:
|
361 |
+
pred_alpha = self.matting_decoder(
|
362 |
+
image_embeddings = features, # [B, 256, 64, 64]
|
363 |
+
image_pe = image_pe,
|
364 |
+
sparse_prompt_embeddings = sparse_embeddings,
|
365 |
+
dense_prompt_embeddings = dense_embeddings,
|
366 |
+
multimask_output = False,
|
367 |
+
interm_embeddings = interm_features, # [B, 256, 64, 64]
|
368 |
+
hq_features = hq_features,
|
369 |
+
images = images,
|
370 |
+
return_alpha_logits = (self.alpha_reg_range is not None),
|
371 |
+
pred_trimap = pred_trimap
|
372 |
+
)
|
373 |
+
return low_res_masks, pred_alpha, pred_trimap, sam_hq_matting_token
|
374 |
+
|
375 |
+
def forward(self, batched_inputs): # image: [1, 3, 643, 960]: 0.0~1.0, trimap: [1, 1, 643, 960]: 0.0~1.0
|
376 |
+
|
377 |
+
inputs = self.preprocess_inputs(batched_inputs)
|
378 |
+
images, bbox, gt_alpha, trimap, condition = inputs['images'], inputs['bbox'], inputs['alpha'], inputs['trimap'], inputs['condition']
|
379 |
+
|
380 |
+
if self.backbone_condition:
|
381 |
+
condition_proj = self.condition_embedding(condition)
|
382 |
+
elif self.backbone_bbox_prompt is not None or self.bbox_prompt_all_block is not None:
|
383 |
+
condition_proj = bbox
|
384 |
+
else:
|
385 |
+
condition_proj = None
|
386 |
+
|
387 |
+
low_res_masks, pred_alpha, pred_trimap, sam_hq_matting_token = self.forward_samhq_and_matting_decoder(images, bbox, condition_proj)
|
388 |
+
|
389 |
+
assert not self.training
|
390 |
+
if self.eval_w_sam_hq_mask:
|
391 |
+
self.sam_predictor.model.image_encoder.disable_adapter_layers()
|
392 |
+
with torch.no_grad():
|
393 |
+
ori_features, ori_interm_features = self.sam_predictor.model.image_encoder(images)
|
394 |
+
samhq_low_res_masks = self.forward_samhq_others(images, bbox, ori_features, ori_interm_features)[-1]
|
395 |
+
samhq_low_res_masks = F.interpolate(samhq_low_res_masks, size=(images.shape[-2], images.shape[-1]), mode='bilinear', align_corners=False)
|
396 |
+
self.sam_predictor.model.image_encoder.enable_adapter_layers()
|
397 |
+
|
398 |
+
return pred_alpha, samhq_low_res_masks
|
399 |
+
else:
|
400 |
+
return pred_alpha
|
401 |
+
|
402 |
+
def forward_samhq_image_encoder(self, images, condition_proj=None):
|
403 |
+
if self.sam2:
|
404 |
+
backbone_out = self.sam_predictor.model.forward_image([images, condition_proj])
|
405 |
+
_, vision_feats, _, _ = self.sam_predictor.model._prepare_backbone_features(backbone_out)
|
406 |
+
# Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
|
407 |
+
if self.sam_predictor.model.directly_add_no_mem_embed:
|
408 |
+
vision_feats[-1] = vision_feats[-1] + self.sam_predictor.model.no_mem_embed
|
409 |
+
feats = [
|
410 |
+
feat.permute(1, 2, 0).view(feat.shape[1], -1, *feat_size)
|
411 |
+
for feat, feat_size in zip(vision_feats[::-1], self.sam_predictor._bb_feat_sizes[::-1])
|
412 |
+
][::-1]
|
413 |
+
return {"image_embed": feats[-1], "high_res_feats": feats[:-1]}, None, None
|
414 |
+
else:
|
415 |
+
if self.backbone_condition:
|
416 |
+
condition_layer = self.condition_conv
|
417 |
+
elif self.backbone_bbox_prompt:
|
418 |
+
condition_layer = self.condition_layer
|
419 |
+
else:
|
420 |
+
condition_layer = None
|
421 |
+
# [B, 3, 1024, 1024]: -2. ~ 2. --> [B, 256, 64, 64], 4 x [B, 64, 64, 768]
|
422 |
+
features, interm_features, pred_trimap = self.sam_predictor.model.image_encoder(images, condition_proj, condition_layer)
|
423 |
+
return features, interm_features, pred_trimap
|
424 |
+
|
425 |
+
# @torch.no_grad()
|
426 |
+
def forward_samhq_others(self, images, bbox, features, interm_features):
|
427 |
+
if self.sam2:
|
428 |
+
sam2_logits, matting_logits = self.sam_predictor.predict_batch_boxes_and_features(bbox, features)
|
429 |
+
return features, sam2_logits, matting_logits
|
430 |
+
|
431 |
+
image_pe = self.sam_predictor.model.prompt_encoder.get_dense_pe()
|
432 |
+
|
433 |
+
cat_sparse_embeddings = []
|
434 |
+
cat_dense_prompt_embeddings = []
|
435 |
+
cat_hq_features = []
|
436 |
+
cat_sam_logits = []
|
437 |
+
cat_low_res_masks = []
|
438 |
+
cat_sam_hq_matting_token = defaultdict(list)
|
439 |
+
|
440 |
+
for idx in range(images.shape[0]):
|
441 |
+
# get hq_features from SAM_HQ mask decoder
|
442 |
+
|
443 |
+
# Embed prompts
|
444 |
+
sparse_embeddings, dense_embeddings = self.sam_predictor.model.prompt_encoder(
|
445 |
+
points=None,
|
446 |
+
# boxes=bbox[idx: idx + 1],
|
447 |
+
boxes=bbox[idx], # [N, 4]
|
448 |
+
masks=None,
|
449 |
+
) # [B, 2, 256], [B, 256, 64, 64]
|
450 |
+
|
451 |
+
# Predict masks
|
452 |
+
if isinstance(self.sam_predictor.model.mask_decoder, MaskDecoderHQMatting):
|
453 |
+
sam_hq_matting_token = self.sam_predictor.model.mask_decoder(
|
454 |
+
image_embeddings = features[idx: idx + 1],
|
455 |
+
image_pe = image_pe,
|
456 |
+
sparse_prompt_embeddings = sparse_embeddings,
|
457 |
+
dense_prompt_embeddings = dense_embeddings,
|
458 |
+
multimask_output = self.multimask_output,
|
459 |
+
interm_embeddings = [interm_feature[idx: idx + 1] for interm_feature in interm_features],
|
460 |
+
)
|
461 |
+
for key in sam_hq_matting_token.keys():
|
462 |
+
cat_sam_hq_matting_token[key].append(sam_hq_matting_token[key])
|
463 |
+
else:
|
464 |
+
low_res_masks, masks_sam, hq_features = self.sam_predictor.model.mask_decoder(
|
465 |
+
image_embeddings = features[idx: idx + 1],
|
466 |
+
image_pe = image_pe,
|
467 |
+
sparse_prompt_embeddings = sparse_embeddings,
|
468 |
+
dense_prompt_embeddings = dense_embeddings,
|
469 |
+
multimask_output = self.multimask_output,
|
470 |
+
hq_token_only = self.hq_token_only,
|
471 |
+
interm_embeddings = [interm_feature[idx: idx + 1] for interm_feature in interm_features],
|
472 |
+
return_hq_features_type = self.hq_features_type
|
473 |
+
)
|
474 |
+
cat_hq_features.append(hq_features)
|
475 |
+
cat_sam_logits.append(masks_sam)
|
476 |
+
cat_low_res_masks.append(low_res_masks)
|
477 |
+
|
478 |
+
cat_sparse_embeddings.append(sparse_embeddings)
|
479 |
+
cat_dense_prompt_embeddings.append(dense_embeddings)
|
480 |
+
|
481 |
+
sparse_embeddings = torch.stack(cat_sparse_embeddings, dim=0) # [B, 1, 2, 256]
|
482 |
+
dense_embeddings = torch.stack(cat_dense_prompt_embeddings, dim=0) # [B, 1, 256, 64, 64]
|
483 |
+
|
484 |
+
if self.matting_token:
|
485 |
+
for key in cat_sam_hq_matting_token.keys():
|
486 |
+
cat_sam_hq_matting_token[key] = torch.cat(cat_sam_hq_matting_token[key], dim=0)
|
487 |
+
cat_sam_hq_matting_token[key] = F.interpolate(cat_sam_hq_matting_token[key], size=images.shape[-2:], mode='bilinear', align_corners=False)
|
488 |
+
sam_hq_matting_token = cat_sam_hq_matting_token
|
489 |
+
return features, image_pe, sparse_embeddings, dense_embeddings, interm_features, sam_hq_matting_token
|
490 |
+
else:
|
491 |
+
hq_features = torch.cat(cat_hq_features, dim=0) # [B, 1, 256, 256]
|
492 |
+
low_res_masks = torch.cat(cat_low_res_masks, dim=0) # [B, 1, 256, 256]
|
493 |
+
hq_features = F.interpolate(hq_features, size=images.shape[-2:], mode='bilinear', align_corners=False) # [B, 1, 256, 256] --> [B, 1, 1024, 1024]
|
494 |
+
sam_logits = torch.cat(cat_sam_logits, dim=0)
|
495 |
+
sam_logits = F.interpolate(sam_logits, size=images.shape[-2:], mode='bilinear', align_corners=False) # [B, 1, 256, 256] --> [B, 1, 1024, 1024]
|
496 |
+
return features, image_pe, sparse_embeddings, dense_embeddings, interm_features, hq_features, sam_logits, low_res_masks
|
497 |
+
|
498 |
+
def forward_samhq(self, images, bbox, condition_proj=None):
|
499 |
+
if self.lora_rank is None:
|
500 |
+
with torch.no_grad():
|
501 |
+
features, interm_features, pred_trimap = self.forward_samhq_image_encoder(images, condition_proj)
|
502 |
+
else:
|
503 |
+
features, interm_features, pred_trimap = self.forward_samhq_image_encoder(images, condition_proj)
|
504 |
+
|
505 |
+
return self.forward_samhq_others(images, bbox, features, interm_features) + (pred_trimap, )
|
506 |
+
|
507 |
+
def get_frozen_sam_logits(self, images, bbox, mask_type='hq'):
|
508 |
+
|
509 |
+
if self.sam2:
|
510 |
+
features, _, _ = self.forward_samhq_image_encoder(images)
|
511 |
+
sam2_logits = self.sam_predictor.predict_batch_boxes_and_features(bbox, features, wo_matting_token=True)
|
512 |
+
sam2_logits = F.interpolate(sam2_logits, size=images.shape[-2:], mode='bilinear', align_corners=False)
|
513 |
+
return sam2_logits
|
514 |
+
|
515 |
+
assert mask_type in {'hq', 'sam'}
|
516 |
+
features, interm_features, _ = self.forward_samhq_image_encoder(images)
|
517 |
+
image_pe = self.sam_predictor.model.prompt_encoder.get_dense_pe()
|
518 |
+
|
519 |
+
cat_logits = []
|
520 |
+
for idx in range(images.shape[0]):
|
521 |
+
sparse_embeddings, dense_embeddings = self.sam_predictor.model.prompt_encoder(points=None, boxes=bbox[idx], masks=None)
|
522 |
+
|
523 |
+
low_res_masks, masks_sam, hq_features = self.sam_predictor.model.frozen_mask_decoder(
|
524 |
+
image_embeddings = features[idx: idx + 1],
|
525 |
+
image_pe = image_pe,
|
526 |
+
sparse_prompt_embeddings = sparse_embeddings,
|
527 |
+
dense_prompt_embeddings = dense_embeddings,
|
528 |
+
multimask_output = self.multimask_output,
|
529 |
+
hq_token_only = self.hq_token_only,
|
530 |
+
interm_embeddings = [interm_feature[idx: idx + 1] for interm_feature in interm_features],
|
531 |
+
return_hq_features_type = self.hq_features_type
|
532 |
+
)
|
533 |
+
if mask_type == 'hq':
|
534 |
+
cat_logits.append(hq_features)
|
535 |
+
else:
|
536 |
+
cat_logits.append(masks_sam)
|
537 |
+
|
538 |
+
logits = torch.cat(cat_logits, dim=0) # [B, 1, 256, 256]
|
539 |
+
logits = F.interpolate(logits, size=images.shape[-2:], mode='bilinear', align_corners=False) # [B, 1, 256, 256] --> [B, 1, 1024, 1024]
|
540 |
+
return logits
|
541 |
+
|
542 |
+
def vis_training_results(self, **kwargs):
|
543 |
+
# images, bbox, trimap, low_res_masks, pred_alpha, alpha
|
544 |
+
self.train_iter_index += 1
|
545 |
+
if self.train_iter_index % self.vis_period == 0:
|
546 |
+
batch_save_results = []
|
547 |
+
save_path = os.path.join(self.output_dir, '{:06d}_rank{}.jpg'.format(self.train_iter_index, get_local_rank()))
|
548 |
+
|
549 |
+
# [('images', (4, 3, 1024, 1024), -2.117904, 2.64), ('bbox', (4, 1, 4), 0.0, 1023.0), ('trimap', (4, 1, 1024, 1024), 0.0, 1.0), ('low_res_masks', (4, 1, 256, 256), -20.38, 10.15), ('pred_alpha', (4, 1, 1024, 1024), 0.1547, 0.791), ('alpha', (4, 1, 1024, 1024), 0.0, 1.0)]
|
550 |
+
for key in kwargs.keys():
|
551 |
+
if key == 'bbox':
|
552 |
+
continue
|
553 |
+
# turn all tensor to [B, H, W, 3]: 0~255 np.int8
|
554 |
+
if key == 'images':
|
555 |
+
kwargs[key] = kwargs[key] * self.pixel_std + self.pixel_mean
|
556 |
+
kwargs[key] = kwargs[key].permute(0, 2, 3, 1) * 255.0
|
557 |
+
for i in range(kwargs['images'].shape[0]):
|
558 |
+
l, u, r, d = int(kwargs['bbox'][i, 0, 0].item()), int(kwargs['bbox'][i, 0, 1].item()), int(kwargs['bbox'][i, 0, 2].item()), int(kwargs['bbox'][i, 0, 3].item())
|
559 |
+
red_line = torch.tensor([[255., 0., 0.]], device=kwargs[key].device, dtype=kwargs[key].dtype)
|
560 |
+
kwargs[key][i, u: d, l, :] = red_line
|
561 |
+
kwargs[key][i, u: d, r, :] = red_line
|
562 |
+
kwargs[key][i, u, l: r, :] = red_line
|
563 |
+
kwargs[key][i, d, l: r, :] = red_line
|
564 |
+
elif key in {'low_res_masks', 'frozen_hq_token'}:
|
565 |
+
if torch.max(kwargs[key]) <= 1: # coconut ori alpha
|
566 |
+
kwargs[key] = kwargs[key].permute(0, 2, 3, 1).repeat(1, 1, 1, 3) * 255.0
|
567 |
+
else:
|
568 |
+
kwargs[key] = F.interpolate(kwargs[key], size=(kwargs['images'].shape[-3], kwargs['images'].shape[-2]), mode='bilinear', align_corners=False)
|
569 |
+
kwargs[key] = (kwargs[key] > self.sam_predictor.model.mask_threshold).float().permute(0, 2, 3, 1).repeat(1, 1, 1, 3) * 255.0
|
570 |
+
else:
|
571 |
+
kwargs[key] = kwargs[key].permute(0, 2, 3, 1).repeat(1, 1, 1, 3) * 255.0
|
572 |
+
|
573 |
+
kwargs[key] = np.uint8(kwargs[key].detach().cpu().numpy())
|
574 |
+
|
575 |
+
for i in range(kwargs['images'].shape[0]):
|
576 |
+
save_results = []
|
577 |
+
for key in kwargs.keys():
|
578 |
+
if key != 'bbox':
|
579 |
+
save_results.append(kwargs[key][i])
|
580 |
+
batch_save_results.append(np.concatenate(save_results, axis=1))
|
581 |
+
|
582 |
+
Image.fromarray(np.concatenate(batch_save_results, axis=0)).save(save_path)
|
583 |
+
|
584 |
+
def preprocess_inputs(self, batched_inputs):
|
585 |
+
"""
|
586 |
+
Normalize, pad and batch the input images.
|
587 |
+
"""
|
588 |
+
output = dict()
|
589 |
+
|
590 |
+
if "alpha" in batched_inputs:
|
591 |
+
alpha = batched_inputs["alpha"].to(self.device)
|
592 |
+
else:
|
593 |
+
alpha = None
|
594 |
+
|
595 |
+
bbox = batched_inputs["bbox"].to(self.device)
|
596 |
+
|
597 |
+
if self.training and self.coconut_self_training and sum([i == 'COCONut' for i in batched_inputs['dataset_name']]) >= 1:
|
598 |
+
output['coconut_ori_img'] = []
|
599 |
+
output['coconut_trimap'] = []
|
600 |
+
output['coconut_bbox'] = []
|
601 |
+
output['coconut_idx'] = []
|
602 |
+
for i, dataset_name in enumerate(batched_inputs['dataset_name']):
|
603 |
+
if dataset_name == 'COCONut':
|
604 |
+
# generate coconut_aug_img
|
605 |
+
img_np = np.uint8(batched_inputs["image"][i].permute(1, 2, 0).cpu().numpy() * 255.)
|
606 |
+
strong_aug_img = self.rand_aug(Image.fromarray(img_np), cutout = False)
|
607 |
+
strong_aug_img_tensor = torch.from_numpy(np.array(strong_aug_img)).to(self.device).permute(2, 0, 1)[None] / 255.
|
608 |
+
blur_kernel_sigma = 1.0 + random.random() # random from 1.0 ~ 2.0
|
609 |
+
blur_filter = kf.GaussianBlur2d((101, 101), (blur_kernel_sigma, blur_kernel_sigma))
|
610 |
+
blur_strong_aug_img_tensor = blur_filter(strong_aug_img_tensor)[0]
|
611 |
+
|
612 |
+
output['coconut_ori_img'].append(batched_inputs["image"][i])
|
613 |
+
batched_inputs["image"][i] = blur_strong_aug_img_tensor
|
614 |
+
|
615 |
+
# generate coconut_trimap
|
616 |
+
coconut_mask = (alpha[i] != 0).float()
|
617 |
+
mask_area = torch.sum(coconut_mask)
|
618 |
+
kernel_size = max(self.matting_decoder.min_kernel_size, int((mask_area ** 0.5) / 7)) # self.matting_decoder.kernel_div
|
619 |
+
kernel_size = min(kernel_size, self.matting_decoder.gen_trimap.max_kernal - 1)
|
620 |
+
output['coconut_trimap'].append(self.matting_decoder.gen_trimap(coconut_mask[0], kernel_size=kernel_size)[None])
|
621 |
+
|
622 |
+
output['coconut_bbox'].append(bbox[i])
|
623 |
+
output['coconut_idx'].append(i)
|
624 |
+
|
625 |
+
output['coconut_ori_img'] = torch.stack(output['coconut_ori_img']).to(self.device)
|
626 |
+
output['coconut_ori_img'] = (output['coconut_ori_img'] - self.pixel_mean) / self.pixel_std
|
627 |
+
output['coconut_trimap'] = torch.stack(output['coconut_trimap']).to(self.device)
|
628 |
+
output['coconut_bbox'] = torch.stack(output['coconut_bbox']).to(self.device)
|
629 |
+
|
630 |
+
images = batched_inputs["image"].to(self.device)
|
631 |
+
images = (images - self.pixel_mean) / self.pixel_std
|
632 |
+
assert images.shape[-2] == images.shape[-1] == 1024
|
633 |
+
|
634 |
+
if 'trimap' in batched_inputs.keys():
|
635 |
+
trimap = batched_inputs["trimap"].to(self.device)
|
636 |
+
assert len(torch.unique(trimap)) <= 3
|
637 |
+
else:
|
638 |
+
trimap = None
|
639 |
+
|
640 |
+
output['images'] = images
|
641 |
+
output['bbox'] = bbox
|
642 |
+
output['alpha'] = alpha
|
643 |
+
output['trimap'] = trimap
|
644 |
+
|
645 |
+
if 'hr_images' in batched_inputs.keys():
|
646 |
+
hr_images = batched_inputs["hr_images"].to(self.device)
|
647 |
+
hr_images = (hr_images - self.pixel_mean) / self.pixel_std
|
648 |
+
_, _, H, W = hr_images.shape
|
649 |
+
if hr_images.shape[-1] % 16 != 0 or hr_images.shape[-2] % 16 != 0:
|
650 |
+
new_H = (16 - hr_images.shape[-2] % 16) + H if hr_images.shape[-2] % 16 != 0 else H
|
651 |
+
new_W = (16 - hr_images.shape[-1] % 16) + W if hr_images.shape[-1] % 16 != 0 else W
|
652 |
+
new_hr_images = torch.zeros((hr_images.shape[0], hr_images.shape[1], new_H, new_W)).to(self.device)
|
653 |
+
new_hr_images[:,:,:H,:W] = hr_images[:,:,:,:]
|
654 |
+
del hr_images
|
655 |
+
hr_images = new_hr_images
|
656 |
+
output['hr_images'] = hr_images
|
657 |
+
output['hr_images_ori_h_w'] = (H, W)
|
658 |
+
|
659 |
+
if 'dataset_name' in batched_inputs.keys():
|
660 |
+
output['dataset_name'] = batched_inputs["dataset_name"]
|
661 |
+
|
662 |
+
if self.backbone_condition:
|
663 |
+
if self.w_only_bbox_cond:
|
664 |
+
output['condition'] = output['bbox'][:, 0, :]
|
665 |
+
else:
|
666 |
+
multi_fg_float = batched_inputs["multi_fg"].to(bbox.device).float()[:, None] * 512
|
667 |
+
output['condition'] = torch.concat((output['bbox'][:, 0, :], multi_fg_float), dim=-1)
|
668 |
+
else:
|
669 |
+
output['condition'] = None
|
670 |
+
|
671 |
+
return output
|
modeling/semantic_enhanced_matting/__init__.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from .build_sam import (
|
8 |
+
build_sam,
|
9 |
+
build_sam_vit_h,
|
10 |
+
build_sam_vit_l,
|
11 |
+
build_sam_vit_b,
|
12 |
+
sam_model_registry,
|
13 |
+
)
|
14 |
+
from .build_sam_baseline import sam_model_registry_baseline
|
15 |
+
from .predictor import SamPredictor
|
16 |
+
from .automatic_mask_generator import SamAutomaticMaskGenerator
|
17 |
+
from .mask_decoder_matting import MaskDecoderMatting
|
modeling/semantic_enhanced_matting/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (567 Bytes). View file
|
|
modeling/semantic_enhanced_matting/__pycache__/automatic_mask_generator.cpython-38.pyc
ADDED
Binary file (11.5 kB). View file
|
|