from huggingface_hub import * import os import json import gradio as gr fs = HfFileSystem() api = HfApi() def remove_from(text, from_model, to_model): text = text.replace(from_model, to_model) return text def return_operation_requests(from_model, to_model): ls = [i['name'] for i in fs.ls(path=f'datasets/open-llm-leaderboard/requests/{from_model.split("/")[0]}') if from_model in i['name']] liste=[] for i in range(len(ls)): path_for = ls[i] will_write = json.loads(fs.read_text(path_for)) will_write['model'] = to_model will_write = json.dumps(will_write, indent=2) liste.extend([CommitOperationAdd(path_in_repo="/".join(remove_from(path_for, from_model, to_model).split("/")[3:]), path_or_fileobj=will_write.encode()), CommitOperationDelete(path_in_repo="/".join(path_for.split("/")[3:]))]) return liste def return_operation_results(from_model, to_model): ls = [i['name'] for i in fs.ls(path=f'datasets/open-llm-leaderboard/results/{from_model}') if from_model in i['name']] liste=[] for i in range(len(ls)): path_for = ls[i] will_write = json.loads(fs.read_text(path_for)) will_write['model_name'] = to_model will_write['config']['model_args'] = will_write['config']['model_args'].replace(from_model, to_model) will_write['model_name_sanitized'] = to_model.replace("/", "__", 1) will_write = json.dumps(will_write, indent=2, ensure_ascii=False).encode('utf8').decode() liste.extend([CommitOperationAdd(path_in_repo="/".join(remove_from(path_for, from_model, to_model).split("/")[3:]), path_or_fileobj=will_write.encode()), CommitOperationDelete(path_in_repo="/".join(path_for.split("/")[3:]))]) return liste def model_name_to_details(model_name): return f"datasets/open-llm-leaderboard/{model_name.split('/')[0]}__{model_name.split('/')[1]}-details" def return_operation_details(from_model, to_model): ls = [i['name'] for i in fs.ls(path=model_name_to_details(from_model)) if ("results" in i['name'] and ".json" in i['name'])] liste=[] for i in range(len(ls)): path_for = ls[i] will_write = json.loads(fs.read_text(path_for)) will_write['config_general']['model_name'] = to_model will_write = json.dumps(will_write, indent=2) readme_file = fs.read_text("/".join(path_for.split("/")[:3])+"/README.md").replace(from_model, to_model).replace(model_name_to_details(from_model).split('/')[2], model_name_to_details(to_model).split('/')[2]) liste.extend([CommitOperationAdd(path_in_repo="/".join(path_for.split("/")[3:]), path_or_fileobj=will_write.encode()), CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=readme_file.encode())]) return liste def commit(liste_requests, liste_results, from_model, to_model): common_for_commits = {"commit_message": f"Renaming Model {from_model} to {to_model}", "repo_type": "dataset", "create_pr": True} request_commit = (create_commit(repo_id="open-llm-leaderboard/requests", operations=liste_requests, **common_for_commits)) result_commit = (create_commit(repo_id="open-llm-leaderboard/results", operations=liste_results, **common_for_commits)) all_commits = [request_commit, result_commit] all_repo_ids = ["open-llm-leaderboard/requests", "open-llm-leaderboard/results"] # Edit comment descriptions content = f"{request_commit.pr_url}\n{result_commit.pr_url}" content = f"""This is a pull request aiming to rename the model {from_model} to {to_model}. All related pull requests to rename this model can be found below. # Requests {request_commit.pr_url} # Results {result_commit.pr_url} """ for i, common_repo_id in enumerate(all_repo_ids): commit = all_commits[i] common_for_edits = {"repo_id": common_repo_id, "discussion_num": commit.pr_num, "repo_type": "dataset"} comment_id = get_discussion_details(**common_for_edits).events[0].id edit_discussion_comment(**common_for_edits, comment_id=comment_id, new_content=content) return f"{request_commit.pr_url}\n{result_commit.pr_url}" def commit_gradio(from_model, to_model, hf_token): try: login(hf_token) return commit(return_operation_requests(from_model, to_model), return_operation_results(from_model, to_model), from_model, to_model) except Exception as e: return e demo = gr.Interface(fn=commit_gradio, inputs=["text", "text", "text"], outputs="text") demo.launch(debug=True)