Spaces:
Runtime error
Runtime error
""" | |
This file contains primitives for multi-gpu communication. | |
This is useful when doing distributed training. | |
""" | |
import os | |
import pickle | |
import shutil | |
import gc | |
import mmcv | |
import torch | |
import torch.distributed as dist | |
from mmcv.runner import get_dist_info | |
def is_distributed(): | |
return get_world_size() > 1 | |
def get_world_size(): | |
if not dist.is_available(): | |
return 1 | |
if not dist.is_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
return dist.get_rank() | |
def get_local_rank(): | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
local_rank = int(os.getenv('LOCAL_RANK', 0)) | |
return local_rank | |
def is_master(): | |
return get_rank() == 0 | |
def is_local_master(): | |
return get_local_rank() == 0 | |
def get_local_proc_group(group_size=8): | |
world_size = get_world_size() | |
if world_size <= group_size or group_size == 1: | |
return None | |
assert world_size % group_size == 0, f'world size ({world_size}) should be evenly divided by group size ({group_size}).' | |
process_groups = getattr(get_local_proc_group, 'process_groups', dict()) | |
if group_size not in process_groups: | |
num_groups = dist.get_world_size() // group_size | |
groups = [list(range(i * group_size, (i + 1) * group_size)) for i in range(num_groups)] | |
process_groups.update({group_size: [torch.distributed.new_group(group) for group in groups]}) | |
get_local_proc_group.process_groups = process_groups | |
group_idx = get_rank() // group_size | |
process_groups = get_local_proc_group.process_groups.get(group_size)[group_idx] | |
return process_groups | |
def synchronize(): | |
""" | |
Helper function to synchronize (barrier) among all processes when | |
using distributed training | |
""" | |
if not dist.is_available(): | |
return | |
if not dist.is_initialized(): | |
return | |
world_size = dist.get_world_size() | |
if world_size == 1: | |
return | |
dist.barrier() | |
def all_gather(data): | |
""" | |
Run all_gather on arbitrary picklable data (not necessarily tensors) | |
Args: | |
data: any picklable object | |
Returns: | |
list[data]: list of data gathered from each rank | |
""" | |
to_device = torch.device("cuda") | |
# to_device = torch.device("cpu") | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
# serialized to a Tensor | |
buffer = pickle.dumps(data) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to(to_device) | |
# obtain Tensor size of each rank | |
local_size = torch.LongTensor([tensor.numel()]).to(to_device) | |
size_list = [torch.LongTensor([0]).to(to_device) for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
# receiving Tensor from all ranks | |
# we pad the tensor because torch all_gather does not support | |
# gathering tensors of different shapes | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.ByteTensor(size=(max_size,)).to(to_device)) | |
if local_size != max_size: | |
padding = torch.ByteTensor(size=(max_size - local_size,)).to(to_device) | |
tensor = torch.cat((tensor, padding), dim=0) | |
dist.all_gather(tensor_list, tensor) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
def reduce_dict(input_dict, average=True): | |
""" | |
Args: | |
input_dict (dict): all the values will be reduced | |
average (bool): whether to do average or sum | |
Reduce the values in the dictionary from all processes so that process with rank | |
0 has the averaged results. Returns a dict with the same fields as | |
input_dict, after reduction. | |
""" | |
world_size = get_world_size() | |
if world_size < 2: | |
return input_dict | |
with torch.no_grad(): | |
names = [] | |
values = [] | |
# sort the keys so that they are consistent across processes | |
for k in sorted(input_dict.keys()): | |
names.append(k) | |
values.append(input_dict[k]) | |
values = torch.stack(values, dim=0) | |
dist.reduce(values, dst=0) | |
if dist.get_rank() == 0 and average: | |
# only main process gets accumulated, so only divide by | |
# world_size in this case | |
values /= world_size | |
reduced_dict = {k: v for k, v in zip(names, values)} | |
return reduced_dict | |
def broadcast(data, **kwargs): | |
if get_world_size() == 1: | |
return data | |
data = [data] | |
dist.broadcast_object_list(data, **kwargs) | |
return data[0] | |
def all_gather_cpu(result_part, tmpdir=None, collect_by_master=True): | |
rank, world_size = get_dist_info() | |
if tmpdir is None: | |
tmpdir = './tmp' | |
if rank == 0: | |
mmcv.mkdir_or_exist(tmpdir) | |
synchronize() | |
# dump the part result to the dir | |
mmcv.dump(result_part, os.path.join(tmpdir, f'part_{rank}.pkl')) | |
synchronize() | |
# collect all parts | |
if collect_by_master and rank != 0: | |
return None | |
else: | |
# load results of all parts from tmp dir | |
results = [] | |
for i in range(world_size): | |
part_file = os.path.join(tmpdir, f'part_{i}.pkl') | |
results.append(mmcv.load(part_file)) | |
if not collect_by_master: | |
synchronize() | |
# remove tmp dir | |
if rank == 0: | |
shutil.rmtree(tmpdir) | |
return results | |
def all_gather_tensor(tensor, group_size=None, group=None): | |
if group_size is None: | |
group_size = get_world_size() | |
if group_size == 1: | |
output = [tensor] | |
else: | |
output = [torch.zeros_like(tensor) for _ in range(group_size)] | |
dist.all_gather(output, tensor, group=group) | |
return output | |
def gather_difflen_tensor(feat, num_samples_list, concat=True, group=None, group_size=None): | |
world_size = get_world_size() | |
if world_size == 1: | |
if not concat: | |
return [feat] | |
return feat | |
num_samples, *feat_dim = feat.size() | |
# padding to max number of samples | |
feat_padding = feat.new_zeros((max(num_samples_list), *feat_dim)) | |
feat_padding[:num_samples] = feat | |
# gather | |
feat_gather = all_gather_tensor(feat_padding, group=group, group_size=group_size) | |
for r, num in enumerate(num_samples_list): | |
feat_gather[r] = feat_gather[r][:num] | |
if concat: | |
feat_gather = torch.cat(feat_gather) | |
return feat_gather | |
class GatherLayer(torch.autograd.Function): | |
'''Gather tensors from all process, supporting backward propagation. | |
''' | |
def forward(ctx, input): | |
ctx.save_for_backward(input) | |
num_samples = torch.tensor(input.size(0), dtype=torch.long, device=input.device) | |
ctx.num_samples_list = all_gather_tensor(num_samples) | |
output = gather_difflen_tensor(input, ctx.num_samples_list, concat=False) | |
return tuple(output) | |
def backward(ctx, *grads): # tuple(output)'s grad | |
input, = ctx.saved_tensors | |
num_samples_list = ctx.num_samples_list | |
rank = get_rank() | |
start, end = sum(num_samples_list[:rank]), sum(num_samples_list[:rank + 1]) | |
grads = torch.cat(grads) | |
if is_distributed(): | |
dist.all_reduce(grads) | |
grad_out = torch.zeros_like(input) | |
grad_out[:] = grads[start:end] | |
return grad_out, None, None | |
class GatherLayerWithGroup(torch.autograd.Function): | |
'''Gather tensors from all process, supporting backward propagation. | |
''' | |
def forward(ctx, input, group, group_size): | |
ctx.save_for_backward(input) | |
ctx.group_size = group_size | |
output = all_gather_tensor(input, group=group, group_size=group_size) | |
return tuple(output) | |
def backward(ctx, *grads): # tuple(output)'s grad | |
input, = ctx.saved_tensors | |
grads = torch.stack(grads) | |
if is_distributed(): | |
dist.all_reduce(grads) | |
grad_out = torch.zeros_like(input) | |
grad_out[:] = grads[get_rank() % ctx.group_size] | |
return grad_out, None, None | |
def gather_layer_with_group(data, group=None, group_size=None): | |
if group_size is None: | |
group_size = get_world_size() | |
output = GatherLayer.apply(data, group, group_size) | |
return output | |
from typing import Union | |
import math | |
# from torch.distributed.fsdp.fully_sharded_data_parallel import TrainingState_, _calc_grad_norm | |
def clip_grad_norm_( | |
self, max_norm: Union[float, int], norm_type: Union[float, int] = 2.0 | |
) -> None: | |
self._lazy_init() | |
self._wait_for_previous_optim_step() | |
assert self._is_root, "clip_grad_norm should only be called on the root (parent) instance" | |
self._assert_state(TrainingState_.IDLE) | |
max_norm = float(max_norm) | |
norm_type = float(norm_type) | |
# Computes the max norm for this shard's gradients and sync's across workers | |
local_norm = _calc_grad_norm(self.params_with_grad, norm_type).cuda() # type: ignore[arg-type] | |
if norm_type == math.inf: | |
total_norm = local_norm | |
dist.all_reduce(total_norm, op=torch.distributed.ReduceOp.MAX, group=self.process_group) | |
else: | |
total_norm = local_norm ** norm_type | |
dist.all_reduce(total_norm, group=self.process_group) | |
total_norm = total_norm ** (1.0 / norm_type) | |
clip_coef = torch.tensor(max_norm, dtype=total_norm.dtype, device=total_norm.device) / (total_norm + 1e-6) | |
if clip_coef < 1: | |
# multiply by clip_coef, aka, (max_norm/total_norm). | |
for p in self.params_with_grad: | |
assert p.grad is not None | |
p.grad.detach().mul_(clip_coef.to(p.grad.device)) | |
return total_norm | |
def flush(): | |
gc.collect() | |
torch.cuda.empty_cache() | |