File size: 41,967 Bytes
eadd7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: check https://arxiv.org/abs/2309.05019
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

import math
from typing import List, Optional, Tuple, Union, Callable

import numpy as np
import torch

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
        num_diffusion_timesteps,
        max_beta=0.999,
        alpha_transform_type="cosine",
):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
    if alpha_transform_type == "cosine":

        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


class SASolverScheduler(SchedulerMixin, ConfigMixin):
    """
    `SASolverScheduler` is a fast dedicated high-order solver for diffusion SDEs.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        predictor_order (`int`, defaults to 2):
            The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for guided
            sampling, and `predictor_order=3` for unconditional sampling.
        corrector_order (`int`, defaults to 2):
            The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for guided
            sampling, and `corrector_order=3` for unconditional sampling.
        predictor_corrector_mode (`str`, defaults to `PEC`):
            The predictor-corrector mode can be `PEC` or 'PECE'. It is recommended to use `PEC` mode for fast
            sampling, and `PECE` for high-quality sampling (PECE needs around twice model evaluations as PEC).
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `data_prediction`):
            Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use `data_prediction`
            with `solver_order=2` for guided sampling like in Stable Diffusion.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Default = True.
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
        variance_type (`str`, *optional*):
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
            self,
            num_train_timesteps: int = 1000,
            beta_start: float = 0.0001,
            beta_end: float = 0.02,
            beta_schedule: str = "linear",
            trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
            predictor_order: int = 2,
            corrector_order: int = 2,
            predictor_corrector_mode: str = 'PEC',
            prediction_type: str = "epsilon",
            tau_func: Callable = lambda t: 1 if t >= 200 and t <= 800 else 0,
            thresholding: bool = False,
            dynamic_thresholding_ratio: float = 0.995,
            sample_max_value: float = 1.0,
            algorithm_type: str = "data_prediction",
            lower_order_final: bool = True,
            use_karras_sigmas: Optional[bool] = False,
            lambda_min_clipped: float = -float("inf"),
            variance_type: Optional[str] = None,
            timestep_spacing: str = "linspace",
            steps_offset: int = 0,
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                    torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        if algorithm_type not in ["data_prediction", "noise_prediction"]:
            raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.timestep_list = [None] * max(predictor_order, corrector_order - 1)
        self.model_outputs = [None] * max(predictor_order, corrector_order - 1)

        self.tau_func = tau_func
        self.predict_x0 = algorithm_type == "data_prediction"
        self.lower_order_nums = 0
        self.last_sample = None

    def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """
        # Clipping the minimum of all lambda(t) for numerical stability.
        # This is critical for cosine (squaredcos_cap_v2) noise schedule.
        clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
        last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()

        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64)
            )

        elif self.config.timestep_spacing == "leading":
            step_ratio = last_timestep // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
            log_sigmas = np.log(sigmas)
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
            timesteps = np.flip(timesteps).copy().astype(np.int64)

        self.sigmas = torch.from_numpy(sigmas)

        # when num_inference_steps == num_train_timesteps, we can end up with
        # duplicates in timesteps.
        _, unique_indices = np.unique(timesteps, return_index=True)
        timesteps = timesteps[np.sort(unique_indices)]

        self.timesteps = torch.from_numpy(timesteps).to(device)

        self.num_inference_steps = len(timesteps)

        self.model_outputs = [
                                 None,
                             ] * max(self.config.predictor_order, self.config.corrector_order - 1)
        self.lower_order_nums = 0
        self.last_sample = None

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, height, width = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * height * width)

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]

        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, height, width)
        sample = sample.to(dtype)

        return sample

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
        log_sigma = np.log(sigma)

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

    def convert_model_output(
            self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor
    ) -> torch.FloatTensor:
        """
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

        <Tip>

        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
        prediction and data prediction models.

        </Tip>

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.

        Returns:
            `torch.FloatTensor`:
                The converted model output.
        """

        # SA-Solver_data_prediction needs to solve an integral of the data prediction model.
        if self.config.algorithm_type in ["data_prediction"]:
            if self.config.prediction_type == "epsilon":
                # SA-Solver only needs the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    model_output = model_output[:, :3]
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = alpha_t * sample - sigma_t * model_output
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the SASolverScheduler."
                )

            if self.config.thresholding:
                x0_pred = self._threshold_sample(x0_pred)

            return x0_pred

        # SA-Solver_noise_prediction needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type in ["noise_prediction"]:
            if self.config.prediction_type == "epsilon":
                # SA-Solver only needs the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
            elif self.config.prediction_type == "sample":
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                epsilon = (sample - alpha_t * model_output) / sigma_t
            elif self.config.prediction_type == "v_prediction":
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                epsilon = alpha_t * model_output + sigma_t * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the SASolverScheduler."
                )

            if self.config.thresholding:
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

    def get_coefficients_exponential_negative(self, order, interval_start, interval_end):
        """
        Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end
        """
        assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"

        if order == 0:
            return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1)
        elif order == 1:
            return torch.exp(-interval_end) * (
                        (interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1))
        elif order == 2:
            return torch.exp(-interval_end) * (
                        (interval_start ** 2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start) - (
                            interval_end ** 2 + 2 * interval_end + 2))
        elif order == 3:
            return torch.exp(-interval_end) * (
                        (interval_start ** 3 + 3 * interval_start ** 2 + 6 * interval_start + 6) * torch.exp(
                    interval_end - interval_start) - (interval_end ** 3 + 3 * interval_end ** 2 + 6 * interval_end + 6))

    def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau):
        """
        Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end
        """
        assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"

        # after change of variable(cov)
        interval_end_cov = (1 + tau ** 2) * interval_end
        interval_start_cov = (1 + tau ** 2) * interval_start

        if order == 0:
            return torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / (
            (1 + tau ** 2))
        elif order == 1:
            return torch.exp(interval_end_cov) * ((interval_end_cov - 1) - (interval_start_cov - 1) * torch.exp(
                -(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 2)
        elif order == 2:
            return torch.exp(interval_end_cov) * ((interval_end_cov ** 2 - 2 * interval_end_cov + 2) - (
                        interval_start_cov ** 2 - 2 * interval_start_cov + 2) * torch.exp(
                -(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 3)
        elif order == 3:
            return torch.exp(interval_end_cov) * (
                        (interval_end_cov ** 3 - 3 * interval_end_cov ** 2 + 6 * interval_end_cov - 6) - (
                            interval_start_cov ** 3 - 3 * interval_start_cov ** 2 + 6 * interval_start_cov - 6) * torch.exp(
                    -(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 4)

    def lagrange_polynomial_coefficient(self, order, lambda_list):
        """
        Calculate the coefficient of lagrange polynomial
        """

        assert order in [0, 1, 2, 3]
        assert order == len(lambda_list) - 1
        if order == 0:
            return [[1]]
        elif order == 1:
            return [[1 / (lambda_list[0] - lambda_list[1]), -lambda_list[1] / (lambda_list[0] - lambda_list[1])],
                    [1 / (lambda_list[1] - lambda_list[0]), -lambda_list[0] / (lambda_list[1] - lambda_list[0])]]
        elif order == 2:
            denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2])
            denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2])
            denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1])
            return [[1 / denominator1,
                     (-lambda_list[1] - lambda_list[2]) / denominator1,
                     lambda_list[1] * lambda_list[2] / denominator1],

                    [1 / denominator2,
                     (-lambda_list[0] - lambda_list[2]) / denominator2,
                     lambda_list[0] * lambda_list[2] / denominator2],

                    [1 / denominator3,
                     (-lambda_list[0] - lambda_list[1]) / denominator3,
                     lambda_list[0] * lambda_list[1] / denominator3]
                    ]
        elif order == 3:
            denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) * (
                        lambda_list[0] - lambda_list[3])
            denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) * (
                        lambda_list[1] - lambda_list[3])
            denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) * (
                        lambda_list[2] - lambda_list[3])
            denominator4 = (lambda_list[3] - lambda_list[0]) * (lambda_list[3] - lambda_list[1]) * (
                        lambda_list[3] - lambda_list[2])
            return [[1 / denominator1,
                     (-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1,
                     (lambda_list[1] * lambda_list[2] + lambda_list[1] * lambda_list[3] + lambda_list[2] * lambda_list[
                         3]) / denominator1,
                     (-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1],

                    [1 / denominator2,
                     (-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2,
                     (lambda_list[0] * lambda_list[2] + lambda_list[0] * lambda_list[3] + lambda_list[2] * lambda_list[
                         3]) / denominator2,
                     (-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2],

                    [1 / denominator3,
                     (-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3,
                     (lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[3] + lambda_list[1] * lambda_list[
                         3]) / denominator3,
                     (-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3],

                    [1 / denominator4,
                     (-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4,
                     (lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[2] + lambda_list[1] * lambda_list[
                         2]) / denominator4,
                     (-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4]

                    ]

    def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau):
        assert order in [1, 2, 3, 4]
        assert order == len(lambda_list), 'the length of lambda list must be equal to the order'
        coefficients = []
        lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list)
        for i in range(order):
            coefficient = 0
            for j in range(order):
                if self.predict_x0:

                    coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive(
                        order - 1 - j, interval_start, interval_end, tau)
                else:
                    coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative(
                        order - 1 - j, interval_start, interval_end)
            coefficients.append(coefficient)
        assert len(coefficients) == order, 'the length of coefficients does not match the order'
        return coefficients

    def stochastic_adams_bashforth_update(
            self,
            model_output: torch.FloatTensor,
            prev_timestep: int,
            sample: torch.FloatTensor,
            noise: torch.FloatTensor,
            order: int,
            tau: torch.FloatTensor,
    ) -> torch.FloatTensor:
        """
        One step for the SA-Predictor.

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model at the current timestep.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            order (`int`):
                The order of SA-Predictor at this timestep.

        Returns:
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
        """

        assert noise is not None
        timestep_list = self.timestep_list
        model_output_list = self.model_outputs
        s0, t = self.timestep_list[-1], prev_timestep
        lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
        alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
        sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
        gradient_part = torch.zeros_like(sample)
        h = lambda_t - lambda_s0
        lambda_list = []

        for i in range(order):
            lambda_list.append(self.lambda_t[timestep_list[-(i + 1)]])

        gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)

        x = sample

        if self.predict_x0:
            if order == 2:  ## if order = 2 we do a modification that does not influence the convergence order similar to unipc. Note: This is used only for few steps sampling.
                # The added term is O(h^3). Empirically we find it will slightly improve the image quality.
                # ODE case
                # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
                # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
                gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
                            h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
                                (1 + tau ** 2) ** 2)) / (self.lambda_t[timestep_list[-1]] - self.lambda_t[
                    timestep_list[-2]])
                gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
                            h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
                                (1 + tau ** 2) ** 2)) / (self.lambda_t[timestep_list[-1]] - self.lambda_t[
                    timestep_list[-2]])

        for i in range(order):
            if self.predict_x0:

                gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[
                    i] * model_output_list[-(i + 1)]
            else:
                gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_output_list[-(i + 1)]

        if self.predict_x0:
            noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise
        else:
            noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise

        if self.predict_x0:
            x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
        else:
            x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part

        x_t = x_t.to(x.dtype)
        return x_t

    def stochastic_adams_moulton_update(
            self,
            this_model_output: torch.FloatTensor,
            this_timestep: int,
            last_sample: torch.FloatTensor,
            last_noise: torch.FloatTensor,
            this_sample: torch.FloatTensor,
            order: int,
            tau: torch.FloatTensor,
    ) -> torch.FloatTensor:
        """
        One step for the SA-Corrector.

        Args:
            this_model_output (`torch.FloatTensor`):
                The model outputs at `x_t`.
            this_timestep (`int`):
                The current timestep `t`.
            last_sample (`torch.FloatTensor`):
                The generated sample before the last predictor `x_{t-1}`.
            this_sample (`torch.FloatTensor`):
                The generated sample after the last predictor `x_{t}`.
            order (`int`):
                The order of SA-Corrector at this step.

        Returns:
            `torch.FloatTensor`:
                The corrected sample tensor at the current timestep.
        """

        assert last_noise is not None
        timestep_list = self.timestep_list
        model_output_list = self.model_outputs
        s0, t = self.timestep_list[-1], this_timestep
        lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
        alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
        sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
        gradient_part = torch.zeros_like(this_sample)
        h = lambda_t - lambda_s0
        t_list = timestep_list + [this_timestep]
        lambda_list = []
        for i in range(order):
            lambda_list.append(self.lambda_t[t_list[-(i + 1)]])

        model_prev_list = model_output_list + [this_model_output]

        gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)

        x = last_sample

        if self.predict_x0:
            if order == 2:  ## if order = 2 we do a modification that does not influence the convergence order similar to UniPC. Note: This is used only for few steps sampling.
                # The added term is O(h^3). Empirically we find it will slightly improve the image quality.
                # ODE case
                # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
                # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
                gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
                            h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
                                (1 + tau ** 2) ** 2 * h))
                gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
                            h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
                                (1 + tau ** 2) ** 2 * h))

        for i in range(order):
            if self.predict_x0:
                gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[
                    i] * model_prev_list[-(i + 1)]
            else:
                gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)]

        if self.predict_x0:
            noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * last_noise
        else:
            noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * last_noise

        if self.predict_x0:
            x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
        else:
            x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part

        x_t = x_t.to(x.dtype)
        return x_t

    def step(
            self,
            model_output: torch.FloatTensor,
            timestep: int,
            sample: torch.FloatTensor,
            generator=None,
            return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the SA-Solver.

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero()
        if len(step_index) == 0:
            step_index = len(self.timesteps) - 1
        else:
            step_index = step_index.item()

        use_corrector = (
                step_index > 0 and self.last_sample is not None
        )

        model_output_convert = self.convert_model_output(model_output, timestep, sample)

        if use_corrector:
            current_tau = self.tau_func(self.timestep_list[-1])
            sample = self.stochastic_adams_moulton_update(
                this_model_output=model_output_convert,
                this_timestep=timestep,
                last_sample=self.last_sample,
                last_noise=self.last_noise,
                this_sample=sample,
                order=self.this_corrector_order,
                tau=current_tau,
            )

        prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1]

        for i in range(max(self.config.predictor_order, self.config.corrector_order - 1) - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
            self.timestep_list[i] = self.timestep_list[i + 1]

        self.model_outputs[-1] = model_output_convert
        self.timestep_list[-1] = timestep

        noise = randn_tensor(
            model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
        )

        if self.config.lower_order_final:
            this_predictor_order = min(self.config.predictor_order, len(self.timesteps) - step_index)
            this_corrector_order = min(self.config.corrector_order, len(self.timesteps) - step_index + 1)
        else:
            this_predictor_order = self.config.predictor_order
            this_corrector_order = self.config.corrector_order

        self.this_predictor_order = min(this_predictor_order, self.lower_order_nums + 1)  # warmup for multistep
        self.this_corrector_order = min(this_corrector_order, self.lower_order_nums + 2)  # warmup for multistep
        assert self.this_predictor_order > 0
        assert self.this_corrector_order > 0

        self.last_sample = sample
        self.last_noise = noise

        current_tau = self.tau_func(self.timestep_list[-1])
        prev_sample = self.stochastic_adams_bashforth_update(
            model_output=model_output_convert,
            prev_timestep=prev_timestep,
            sample=sample,
            noise=noise,
            order=self.this_predictor_order,
            tau=current_tau,
        )

        if self.lower_order_nums < max(self.config.predictor_order, self.config.corrector_order - 1):
            self.lower_order_nums += 1

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`):
                The input sample.

        Returns:
            `torch.FloatTensor`:
                A scaled input sample.
        """
        return sample

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
    def add_noise(
            self,
            original_samples: torch.FloatTensor,
            noise: torch.FloatTensor,
            timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps