Spaces:
Runtime error
Runtime error
File size: 41,967 Bytes
eadd7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: check https://arxiv.org/abs/2309.05019
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
import math
from typing import List, Optional, Tuple, Union, Callable
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
num_diffusion_timesteps,
max_beta=0.999,
alpha_transform_type="cosine",
):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
Choose from `cosine` or `exp`
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(t):
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(t):
return math.exp(t * -12.0)
else:
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
class SASolverScheduler(SchedulerMixin, ConfigMixin):
"""
`SASolverScheduler` is a fast dedicated high-order solver for diffusion SDEs.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
predictor_order (`int`, defaults to 2):
The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for guided
sampling, and `predictor_order=3` for unconditional sampling.
corrector_order (`int`, defaults to 2):
The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for guided
sampling, and `corrector_order=3` for unconditional sampling.
predictor_corrector_mode (`str`, defaults to `PEC`):
The predictor-corrector mode can be `PEC` or 'PECE'. It is recommended to use `PEC` mode for fast
sampling, and `PECE` for high-quality sampling (PECE needs around twice model evaluations as PEC).
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0):
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
`algorithm_type="dpmsolver++"`.
algorithm_type (`str`, defaults to `data_prediction`):
Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use `data_prediction`
with `solver_order=2` for guided sampling like in Stable Diffusion.
lower_order_final (`bool`, defaults to `True`):
Whether to use lower-order solvers in the final steps. Default = True.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
lambda_min_clipped (`float`, defaults to `-inf`):
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
cosine (`squaredcos_cap_v2`) noise schedule.
variance_type (`str`, *optional*):
Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
contains the predicted Gaussian variance.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps. You can use a combination of `offset=1` and
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
Diffusion.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
predictor_order: int = 2,
corrector_order: int = 2,
predictor_corrector_mode: str = 'PEC',
prediction_type: str = "epsilon",
tau_func: Callable = lambda t: 1 if t >= 200 and t <= 800 else 0,
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "data_prediction",
lower_order_final: bool = True,
use_karras_sigmas: Optional[bool] = False,
lambda_min_clipped: float = -float("inf"),
variance_type: Optional[str] = None,
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(beta_start ** 0.5, beta_end ** 0.5, num_train_timesteps, dtype=torch.float32) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# Currently we only support VP-type noise schedule
self.alpha_t = torch.sqrt(self.alphas_cumprod)
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
if algorithm_type not in ["data_prediction", "noise_prediction"]:
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
# setable values
self.num_inference_steps = None
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
self.timesteps = torch.from_numpy(timesteps)
self.timestep_list = [None] * max(predictor_order, corrector_order - 1)
self.model_outputs = [None] * max(predictor_order, corrector_order - 1)
self.tau_func = tau_func
self.predict_x0 = algorithm_type == "data_prediction"
self.lower_order_nums = 0
self.last_sample = None
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
# Clipping the minimum of all lambda(t) for numerical stability.
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = (
np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64)
)
elif self.config.timestep_spacing == "leading":
step_ratio = last_timestep // (num_inference_steps + 1)
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = self.config.num_train_timesteps / num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
)
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
if self.config.use_karras_sigmas:
log_sigmas = np.log(sigmas)
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
timesteps = np.flip(timesteps).copy().astype(np.int64)
self.sigmas = torch.from_numpy(sigmas)
# when num_inference_steps == num_train_timesteps, we can end up with
# duplicates in timesteps.
_, unique_indices = np.unique(timesteps, return_index=True)
timesteps = timesteps[np.sort(unique_indices)]
self.timesteps = torch.from_numpy(timesteps).to(device)
self.num_inference_steps = len(timesteps)
self.model_outputs = [
None,
] * max(self.config.predictor_order, self.config.corrector_order - 1)
self.lower_order_nums = 0
self.last_sample = None
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, height, width = sample.shape
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * height * width)
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
s = torch.clamp(
s, min=1, max=self.config.sample_max_value
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, height, width)
sample = sample.to(dtype)
return sample
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min: float = in_sigmas[-1].item()
sigma_max: float = in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
def convert_model_output(
self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor
) -> torch.FloatTensor:
"""
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
integral of the data prediction model.
<Tip>
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
prediction and data prediction models.
</Tip>
Args:
model_output (`torch.FloatTensor`):
The direct output from the learned diffusion model.
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
Returns:
`torch.FloatTensor`:
The converted model output.
"""
# SA-Solver_data_prediction needs to solve an integral of the data prediction model.
if self.config.algorithm_type in ["data_prediction"]:
if self.config.prediction_type == "epsilon":
# SA-Solver only needs the "mean" output.
if self.config.variance_type in ["learned", "learned_range"]:
model_output = model_output[:, :3]
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = (sample - sigma_t * model_output) / alpha_t
elif self.config.prediction_type == "sample":
x0_pred = model_output
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = alpha_t * sample - sigma_t * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the SASolverScheduler."
)
if self.config.thresholding:
x0_pred = self._threshold_sample(x0_pred)
return x0_pred
# SA-Solver_noise_prediction needs to solve an integral of the noise prediction model.
elif self.config.algorithm_type in ["noise_prediction"]:
if self.config.prediction_type == "epsilon":
# SA-Solver only needs the "mean" output.
if self.config.variance_type in ["learned", "learned_range"]:
epsilon = model_output[:, :3]
else:
epsilon = model_output
elif self.config.prediction_type == "sample":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
epsilon = (sample - alpha_t * model_output) / sigma_t
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
epsilon = alpha_t * model_output + sigma_t * sample
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the SASolverScheduler."
)
if self.config.thresholding:
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = (sample - sigma_t * epsilon) / alpha_t
x0_pred = self._threshold_sample(x0_pred)
epsilon = (sample - alpha_t * x0_pred) / sigma_t
return epsilon
def get_coefficients_exponential_negative(self, order, interval_start, interval_end):
"""
Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end
"""
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"
if order == 0:
return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1)
elif order == 1:
return torch.exp(-interval_end) * (
(interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1))
elif order == 2:
return torch.exp(-interval_end) * (
(interval_start ** 2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start) - (
interval_end ** 2 + 2 * interval_end + 2))
elif order == 3:
return torch.exp(-interval_end) * (
(interval_start ** 3 + 3 * interval_start ** 2 + 6 * interval_start + 6) * torch.exp(
interval_end - interval_start) - (interval_end ** 3 + 3 * interval_end ** 2 + 6 * interval_end + 6))
def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau):
"""
Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end
"""
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"
# after change of variable(cov)
interval_end_cov = (1 + tau ** 2) * interval_end
interval_start_cov = (1 + tau ** 2) * interval_start
if order == 0:
return torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / (
(1 + tau ** 2))
elif order == 1:
return torch.exp(interval_end_cov) * ((interval_end_cov - 1) - (interval_start_cov - 1) * torch.exp(
-(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 2)
elif order == 2:
return torch.exp(interval_end_cov) * ((interval_end_cov ** 2 - 2 * interval_end_cov + 2) - (
interval_start_cov ** 2 - 2 * interval_start_cov + 2) * torch.exp(
-(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 3)
elif order == 3:
return torch.exp(interval_end_cov) * (
(interval_end_cov ** 3 - 3 * interval_end_cov ** 2 + 6 * interval_end_cov - 6) - (
interval_start_cov ** 3 - 3 * interval_start_cov ** 2 + 6 * interval_start_cov - 6) * torch.exp(
-(interval_end_cov - interval_start_cov))) / ((1 + tau ** 2) ** 4)
def lagrange_polynomial_coefficient(self, order, lambda_list):
"""
Calculate the coefficient of lagrange polynomial
"""
assert order in [0, 1, 2, 3]
assert order == len(lambda_list) - 1
if order == 0:
return [[1]]
elif order == 1:
return [[1 / (lambda_list[0] - lambda_list[1]), -lambda_list[1] / (lambda_list[0] - lambda_list[1])],
[1 / (lambda_list[1] - lambda_list[0]), -lambda_list[0] / (lambda_list[1] - lambda_list[0])]]
elif order == 2:
denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2])
denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2])
denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1])
return [[1 / denominator1,
(-lambda_list[1] - lambda_list[2]) / denominator1,
lambda_list[1] * lambda_list[2] / denominator1],
[1 / denominator2,
(-lambda_list[0] - lambda_list[2]) / denominator2,
lambda_list[0] * lambda_list[2] / denominator2],
[1 / denominator3,
(-lambda_list[0] - lambda_list[1]) / denominator3,
lambda_list[0] * lambda_list[1] / denominator3]
]
elif order == 3:
denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) * (
lambda_list[0] - lambda_list[3])
denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) * (
lambda_list[1] - lambda_list[3])
denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) * (
lambda_list[2] - lambda_list[3])
denominator4 = (lambda_list[3] - lambda_list[0]) * (lambda_list[3] - lambda_list[1]) * (
lambda_list[3] - lambda_list[2])
return [[1 / denominator1,
(-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1,
(lambda_list[1] * lambda_list[2] + lambda_list[1] * lambda_list[3] + lambda_list[2] * lambda_list[
3]) / denominator1,
(-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1],
[1 / denominator2,
(-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2,
(lambda_list[0] * lambda_list[2] + lambda_list[0] * lambda_list[3] + lambda_list[2] * lambda_list[
3]) / denominator2,
(-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2],
[1 / denominator3,
(-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3,
(lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[3] + lambda_list[1] * lambda_list[
3]) / denominator3,
(-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3],
[1 / denominator4,
(-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4,
(lambda_list[0] * lambda_list[1] + lambda_list[0] * lambda_list[2] + lambda_list[1] * lambda_list[
2]) / denominator4,
(-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4]
]
def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau):
assert order in [1, 2, 3, 4]
assert order == len(lambda_list), 'the length of lambda list must be equal to the order'
coefficients = []
lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list)
for i in range(order):
coefficient = 0
for j in range(order):
if self.predict_x0:
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive(
order - 1 - j, interval_start, interval_end, tau)
else:
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative(
order - 1 - j, interval_start, interval_end)
coefficients.append(coefficient)
assert len(coefficients) == order, 'the length of coefficients does not match the order'
return coefficients
def stochastic_adams_bashforth_update(
self,
model_output: torch.FloatTensor,
prev_timestep: int,
sample: torch.FloatTensor,
noise: torch.FloatTensor,
order: int,
tau: torch.FloatTensor,
) -> torch.FloatTensor:
"""
One step for the SA-Predictor.
Args:
model_output (`torch.FloatTensor`):
The direct output from the learned diffusion model at the current timestep.
prev_timestep (`int`):
The previous discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
order (`int`):
The order of SA-Predictor at this timestep.
Returns:
`torch.FloatTensor`:
The sample tensor at the previous timestep.
"""
assert noise is not None
timestep_list = self.timestep_list
model_output_list = self.model_outputs
s0, t = self.timestep_list[-1], prev_timestep
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
gradient_part = torch.zeros_like(sample)
h = lambda_t - lambda_s0
lambda_list = []
for i in range(order):
lambda_list.append(self.lambda_t[timestep_list[-(i + 1)]])
gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)
x = sample
if self.predict_x0:
if order == 2: ## if order = 2 we do a modification that does not influence the convergence order similar to unipc. Note: This is used only for few steps sampling.
# The added term is O(h^3). Empirically we find it will slightly improve the image quality.
# ODE case
# gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
# gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
(1 + tau ** 2) ** 2)) / (self.lambda_t[timestep_list[-1]] - self.lambda_t[
timestep_list[-2]])
gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
h ** 2 / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
(1 + tau ** 2) ** 2)) / (self.lambda_t[timestep_list[-1]] - self.lambda_t[
timestep_list[-2]])
for i in range(order):
if self.predict_x0:
gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[
i] * model_output_list[-(i + 1)]
else:
gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_output_list[-(i + 1)]
if self.predict_x0:
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * noise
else:
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise
if self.predict_x0:
x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
else:
x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part
x_t = x_t.to(x.dtype)
return x_t
def stochastic_adams_moulton_update(
self,
this_model_output: torch.FloatTensor,
this_timestep: int,
last_sample: torch.FloatTensor,
last_noise: torch.FloatTensor,
this_sample: torch.FloatTensor,
order: int,
tau: torch.FloatTensor,
) -> torch.FloatTensor:
"""
One step for the SA-Corrector.
Args:
this_model_output (`torch.FloatTensor`):
The model outputs at `x_t`.
this_timestep (`int`):
The current timestep `t`.
last_sample (`torch.FloatTensor`):
The generated sample before the last predictor `x_{t-1}`.
this_sample (`torch.FloatTensor`):
The generated sample after the last predictor `x_{t}`.
order (`int`):
The order of SA-Corrector at this step.
Returns:
`torch.FloatTensor`:
The corrected sample tensor at the current timestep.
"""
assert last_noise is not None
timestep_list = self.timestep_list
model_output_list = self.model_outputs
s0, t = self.timestep_list[-1], this_timestep
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
gradient_part = torch.zeros_like(this_sample)
h = lambda_t - lambda_s0
t_list = timestep_list + [this_timestep]
lambda_list = []
for i in range(order):
lambda_list.append(self.lambda_t[t_list[-(i + 1)]])
model_prev_list = model_output_list + [this_model_output]
gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)
x = last_sample
if self.predict_x0:
if order == 2: ## if order = 2 we do a modification that does not influence the convergence order similar to UniPC. Note: This is used only for few steps sampling.
# The added term is O(h^3). Empirically we find it will slightly improve the image quality.
# ODE case
# gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
# gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
gradient_coefficients[0] += 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
(1 + tau ** 2) ** 2 * h))
gradient_coefficients[1] -= 1.0 * torch.exp((1 + tau ** 2) * lambda_t) * (
h / 2 - (h * (1 + tau ** 2) - 1 + torch.exp((1 + tau ** 2) * (-h))) / (
(1 + tau ** 2) ** 2 * h))
for i in range(order):
if self.predict_x0:
gradient_part += (1 + tau ** 2) * sigma_t * torch.exp(- tau ** 2 * lambda_t) * gradient_coefficients[
i] * model_prev_list[-(i + 1)]
else:
gradient_part += -(1 + tau ** 2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)]
if self.predict_x0:
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau ** 2 * h)) * last_noise
else:
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * last_noise
if self.predict_x0:
x_t = torch.exp(-tau ** 2 * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
else:
x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part
x_t = x_t.to(x.dtype)
return x_t
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
generator=None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
the SA-Solver.
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
step_index = (self.timesteps == timestep).nonzero()
if len(step_index) == 0:
step_index = len(self.timesteps) - 1
else:
step_index = step_index.item()
use_corrector = (
step_index > 0 and self.last_sample is not None
)
model_output_convert = self.convert_model_output(model_output, timestep, sample)
if use_corrector:
current_tau = self.tau_func(self.timestep_list[-1])
sample = self.stochastic_adams_moulton_update(
this_model_output=model_output_convert,
this_timestep=timestep,
last_sample=self.last_sample,
last_noise=self.last_noise,
this_sample=sample,
order=self.this_corrector_order,
tau=current_tau,
)
prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1]
for i in range(max(self.config.predictor_order, self.config.corrector_order - 1) - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.timestep_list[i] = self.timestep_list[i + 1]
self.model_outputs[-1] = model_output_convert
self.timestep_list[-1] = timestep
noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
)
if self.config.lower_order_final:
this_predictor_order = min(self.config.predictor_order, len(self.timesteps) - step_index)
this_corrector_order = min(self.config.corrector_order, len(self.timesteps) - step_index + 1)
else:
this_predictor_order = self.config.predictor_order
this_corrector_order = self.config.corrector_order
self.this_predictor_order = min(this_predictor_order, self.lower_order_nums + 1) # warmup for multistep
self.this_corrector_order = min(this_corrector_order, self.lower_order_nums + 2) # warmup for multistep
assert self.this_predictor_order > 0
assert self.this_corrector_order > 0
self.last_sample = sample
self.last_noise = noise
current_tau = self.tau_func(self.timestep_list[-1])
prev_sample = self.stochastic_adams_bashforth_update(
model_output=model_output_convert,
prev_timestep=prev_timestep,
sample=sample,
noise=noise,
order=self.this_predictor_order,
tau=current_tau,
)
if self.lower_order_nums < max(self.config.predictor_order, self.config.corrector_order - 1):
self.lower_order_nums += 1
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`):
The input sample.
Returns:
`torch.FloatTensor`:
A scaled input sample.
"""
return sample
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps |