Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import datetime | |
import functools | |
import os | |
import torch | |
import torch.distributed as dist | |
import timm.models.hub as timm_hub | |
def setup_for_distributed(is_master): | |
""" | |
This function disables printing when not in master process | |
""" | |
import builtins as __builtin__ | |
builtin_print = __builtin__.print | |
def print(*args, **kwargs): | |
force = kwargs.pop("force", False) | |
if is_master or force: | |
builtin_print(*args, **kwargs) | |
__builtin__.print = print | |
def is_dist_avail_and_initialized(): | |
if not dist.is_available(): | |
return False | |
if not dist.is_initialized(): | |
return False | |
return True | |
def get_world_size(): | |
if not is_dist_avail_and_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not is_dist_avail_and_initialized(): | |
return 0 | |
return dist.get_rank() | |
def is_main_process(): | |
return get_rank() == 0 | |
def init_distributed_mode(args): | |
if args.distributed is False: | |
print("Not using distributed mode") | |
args.rank = 0 | |
return | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
if "RANK" in os.environ and "WORLD_SIZE" in os.environ: | |
args.rank = int(os.environ["RANK"]) | |
args.world_size = int(os.environ["WORLD_SIZE"]) | |
args.gpu = int(os.environ["LOCAL_RANK"]) | |
elif "SLURM_PROCID" in os.environ: | |
args.rank = int(os.environ["SLURM_PROCID"]) | |
args.gpu = args.rank % torch.cuda.device_count() | |
else: | |
print("Not using distributed mode") | |
args.distributed = False | |
args.rank = 0 | |
return | |
args.distributed = True | |
torch.cuda.set_device(args.gpu) | |
args.dist_backend = "nccl" | |
print( | |
"| distributed init (rank {}, world {}): {}".format( | |
args.rank, args.world_size, args.dist_url | |
), | |
flush=True, | |
) | |
torch.distributed.init_process_group( | |
backend=args.dist_backend, | |
init_method=args.dist_url, | |
world_size=args.world_size, | |
rank=args.rank, | |
timeout=datetime.timedelta( | |
days=365 | |
), # allow auto-downloading and de-compressing | |
) | |
torch.distributed.barrier() | |
setup_for_distributed(args.rank == 0) | |
def get_dist_info(): | |
if torch.__version__ < "1.0": | |
initialized = dist._initialized | |
else: | |
initialized = dist.is_initialized() | |
if initialized: | |
rank = dist.get_rank() | |
world_size = dist.get_world_size() | |
else: # non-distributed training | |
rank = 0 | |
world_size = 1 | |
return rank, world_size | |
def main_process(func): | |
def wrapper(*args, **kwargs): | |
rank, _ = get_dist_info() | |
if rank == 0: | |
return func(*args, **kwargs) | |
return wrapper | |
def download_cached_file(url, check_hash=True, progress=False): | |
""" | |
Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again. | |
If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded. | |
""" | |
def get_cached_file_path(): | |
# a hack to sync the file path across processes | |
parts = torch.hub.urlparse(url) | |
filename = os.path.basename(parts.path) | |
cached_file = os.path.join(timm_hub.get_cache_dir(), filename) | |
return cached_file | |
if is_main_process(): | |
timm_hub.download_cached_file(url, check_hash, progress) | |
if is_dist_avail_and_initialized(): | |
dist.barrier() | |
return get_cached_file_path() | |