import torch from transformers import AutoModel, AutoTokenizer from PIL import Image import gradio as gr import tempfile # Load the OCR model and tokenizer tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, pad_token_id=tokenizer.eos_token_id).eval() # Check if GPU is available and use it, else use CPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) # Function to perform OCR on the image def perform_ocr(image): # Save the image to a temporary file with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file: image.save(temp_file.name) # Save the image temp_image_path = temp_file.name # Get the file path for the saved image # Perform OCR using the model result = model.chat(tokenizer, temp_image_path, ocr_type='ocr') return result # Create the Gradio interface using the new syntax interface = gr.Interface( fn=perform_ocr, inputs=gr.Image(type="pil"), # Updated to gr.Image outputs=gr.Textbox(), # Updated to gr.Textbox title="OCR Web App", description="Upload an image to extract text using the GOT-OCR2.0 model." ) # Launch the app interface.launch()