|
import init, { Model } from "./build/m.js"; |
|
|
|
async function fetchArrayBuffer(url) { |
|
const cacheName = "phi-mixformer-candle-cache"; |
|
const cache = await caches.open(cacheName); |
|
const cachedResponse = await cache.match(url); |
|
if (cachedResponse) { |
|
const data = await cachedResponse.arrayBuffer(); |
|
return new Uint8Array(data); |
|
} |
|
const res = await fetch(url, { cache: "force-cache" }); |
|
cache.put(url, res.clone()); |
|
return new Uint8Array(await res.arrayBuffer()); |
|
} |
|
async function concatenateArrayBuffers(urls) { |
|
const arrayBuffers = await Promise.all(urls.map(url => fetchArrayBuffer(url))); |
|
|
|
let totalLength = arrayBuffers.reduce((acc, arrayBuffer) => acc + arrayBuffer.byteLength, 0); |
|
let concatenatedBuffer = new Uint8Array(totalLength); |
|
|
|
let offset = 0; |
|
arrayBuffers.forEach(buffer => { |
|
concatenatedBuffer.set(new Uint8Array(buffer), offset); |
|
offset += buffer.byteLength; |
|
}); |
|
return concatenatedBuffer; |
|
} |
|
|
|
class Phi { |
|
static instance = {}; |
|
|
|
static async getInstance( |
|
weightsURL, |
|
modelID, |
|
tokenizerURL, |
|
configURL, |
|
quantized |
|
) { |
|
|
|
if (!this.instance[modelID]) { |
|
await init(); |
|
|
|
self.postMessage({ status: "loading", message: "Loading Model" }); |
|
const [weightsArrayU8, tokenizerArrayU8, configArrayU8] = |
|
await Promise.all([ |
|
weightsURL instanceof Array ? concatenateArrayBuffers(weightsURL) : fetchArrayBuffer(weightsURL), |
|
fetchArrayBuffer(tokenizerURL), |
|
fetchArrayBuffer(configURL), |
|
]); |
|
|
|
this.instance[modelID] = new Model( |
|
weightsArrayU8, |
|
tokenizerArrayU8, |
|
configArrayU8, |
|
quantized |
|
); |
|
} |
|
return this.instance[modelID]; |
|
} |
|
} |
|
|
|
let controller = null; |
|
self.addEventListener("message", (event) => { |
|
if (event.data.command === "start") { |
|
controller = new AbortController(); |
|
generate(event.data); |
|
} else if (event.data.command === "abort") { |
|
controller.abort(); |
|
} |
|
}); |
|
|
|
async function generate(data) { |
|
const { |
|
weightsURL, |
|
modelID, |
|
tokenizerURL, |
|
configURL, |
|
quantized, |
|
prompt, |
|
temp, |
|
top_p, |
|
repeatPenalty, |
|
seed, |
|
maxSeqLen, |
|
} = data; |
|
try { |
|
self.postMessage({ status: "loading", message: "Starting Phi" }); |
|
const model = await Phi.getInstance( |
|
weightsURL, |
|
modelID, |
|
tokenizerURL, |
|
configURL, |
|
quantized |
|
); |
|
|
|
self.postMessage({ status: "loading", message: "Initializing model" }); |
|
const firstToken = model.init_with_prompt( |
|
prompt, |
|
temp, |
|
top_p, |
|
repeatPenalty, |
|
64, |
|
BigInt(seed) |
|
); |
|
const seq_len = 2048; |
|
|
|
let sentence = firstToken; |
|
let maxTokens = maxSeqLen ? maxSeqLen : seq_len - prompt.length - 1; |
|
let startTime = performance.now(); |
|
let tokensCount = 0; |
|
while (tokensCount < maxTokens) { |
|
await new Promise(async (resolve) => { |
|
if (controller && controller.signal.aborted) { |
|
self.postMessage({ |
|
status: "aborted", |
|
message: "Aborted", |
|
output: prompt + sentence, |
|
}); |
|
return; |
|
} |
|
const token = await model.next_token(); |
|
if (token === "<|endoftext|>") { |
|
self.postMessage({ |
|
status: "complete", |
|
message: "complete", |
|
output: prompt + sentence, |
|
}); |
|
return; |
|
} |
|
const tokensSec = |
|
((tokensCount + 1) / (performance.now() - startTime)) * 1000; |
|
|
|
sentence += token; |
|
self.postMessage({ |
|
status: "generating", |
|
message: "Generating token", |
|
token: token, |
|
sentence: sentence, |
|
totalTime: performance.now() - startTime, |
|
tokensSec, |
|
prompt: prompt, |
|
}); |
|
setTimeout(resolve, 0); |
|
}); |
|
tokensCount++; |
|
} |
|
self.postMessage({ |
|
status: "complete", |
|
message: "complete", |
|
output: prompt + sentence, |
|
}); |
|
} catch (e) { |
|
self.postMessage({ error: e }); |
|
} |
|
} |
|
|