Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
5 |
import uvicorn
|
6 |
from dotenv import load_dotenv
|
7 |
from difflib import SequenceMatcher
|
|
|
8 |
|
9 |
load_dotenv()
|
10 |
|
@@ -20,6 +21,7 @@ models = [
|
|
20 |
|
21 |
# Cargar modelos en memoria solo una vez
|
22 |
llms = [Llama.from_pretrained(repo_id=model['repo_id'], filename=model['filename']) for model in models]
|
|
|
23 |
|
24 |
class ChatRequest(BaseModel):
|
25 |
message: str
|
@@ -29,6 +31,7 @@ class ChatRequest(BaseModel):
|
|
29 |
|
30 |
def generate_chat_response(request, llm):
|
31 |
try:
|
|
|
32 |
user_input = normalize_input(request.message)
|
33 |
response = llm.create_chat_completion(
|
34 |
messages=[{"role": "user", "content": user_input}],
|
@@ -42,10 +45,11 @@ def generate_chat_response(request, llm):
|
|
42 |
return {"response": f"Error: {str(e)}", "literal": user_input}
|
43 |
|
44 |
def normalize_input(input_text):
|
|
|
45 |
return input_text.strip()
|
46 |
|
47 |
def select_best_response(responses, request):
|
48 |
-
coherent_responses = filter_by_coherence(responses, request)
|
49 |
best_response = filter_by_similarity(coherent_responses)
|
50 |
return best_response
|
51 |
|
@@ -68,29 +72,32 @@ async def generate_chat(request: ChatRequest):
|
|
68 |
if not request.message.strip():
|
69 |
raise HTTPException(status_code=400, detail="The message cannot be empty.")
|
70 |
|
|
|
|
|
|
|
71 |
with ThreadPoolExecutor(max_workers=None) as executor:
|
|
|
72 |
futures = [executor.submit(generate_chat_response, request, llm) for llm in llms]
|
73 |
responses = []
|
74 |
-
|
|
|
75 |
response = future.result()
|
76 |
responses.append(response)
|
|
|
77 |
|
78 |
-
#
|
79 |
if any("Error" in response['response'] for response in responses):
|
80 |
error_response = next(response for response in responses if "Error" in response['response'])
|
81 |
raise HTTPException(status_code=500, detail=error_response['response'])
|
82 |
|
83 |
-
|
84 |
-
response_texts = [resp['response'] for resp in responses]
|
85 |
-
literal_inputs = [resp['literal'] for resp in responses]
|
86 |
-
|
87 |
-
# Selecciona la mejor respuesta
|
88 |
-
best_response = select_best_response(response_texts, request)
|
89 |
|
|
|
|
|
90 |
return {
|
91 |
"best_response": best_response,
|
92 |
-
"all_responses":
|
93 |
-
"literal_inputs":
|
94 |
}
|
95 |
|
96 |
if __name__ == "__main__":
|
|
|
5 |
import uvicorn
|
6 |
from dotenv import load_dotenv
|
7 |
from difflib import SequenceMatcher
|
8 |
+
from tqdm import tqdm # Importa tqdm para la barra de progreso
|
9 |
|
10 |
load_dotenv()
|
11 |
|
|
|
21 |
|
22 |
# Cargar modelos en memoria solo una vez
|
23 |
llms = [Llama.from_pretrained(repo_id=model['repo_id'], filename=model['filename']) for model in models]
|
24 |
+
print(f"Modelos cargados: {[model['repo_id'] for model in models]}")
|
25 |
|
26 |
class ChatRequest(BaseModel):
|
27 |
message: str
|
|
|
31 |
|
32 |
def generate_chat_response(request, llm):
|
33 |
try:
|
34 |
+
# Normalización del mensaje para manejo robusto
|
35 |
user_input = normalize_input(request.message)
|
36 |
response = llm.create_chat_completion(
|
37 |
messages=[{"role": "user", "content": user_input}],
|
|
|
45 |
return {"response": f"Error: {str(e)}", "literal": user_input}
|
46 |
|
47 |
def normalize_input(input_text):
|
48 |
+
# Implementar aquí cualquier lógica de normalización que sea necesaria
|
49 |
return input_text.strip()
|
50 |
|
51 |
def select_best_response(responses, request):
|
52 |
+
coherent_responses = filter_by_coherence([resp['response'] for resp in responses], request)
|
53 |
best_response = filter_by_similarity(coherent_responses)
|
54 |
return best_response
|
55 |
|
|
|
72 |
if not request.message.strip():
|
73 |
raise HTTPException(status_code=400, detail="The message cannot be empty.")
|
74 |
|
75 |
+
print(f"Procesando solicitud: {request.message}")
|
76 |
+
|
77 |
+
# Crear un ThreadPoolExecutor para ejecutar las tareas en paralelo
|
78 |
with ThreadPoolExecutor(max_workers=None) as executor:
|
79 |
+
# Usar tqdm para mostrar la barra de progreso
|
80 |
futures = [executor.submit(generate_chat_response, request, llm) for llm in llms]
|
81 |
responses = []
|
82 |
+
|
83 |
+
for future in tqdm(as_completed(futures), total=len(futures), desc="Generando respuestas"):
|
84 |
response = future.result()
|
85 |
responses.append(response)
|
86 |
+
print(f"Modelo procesado: {response['literal'][:30]}...") # Muestra los primeros 30 caracteres de la respuesta
|
87 |
|
88 |
+
# Verificar si hay errores en las respuestas
|
89 |
if any("Error" in response['response'] for response in responses):
|
90 |
error_response = next(response for response in responses if "Error" in response['response'])
|
91 |
raise HTTPException(status_code=500, detail=error_response['response'])
|
92 |
|
93 |
+
best_response = select_best_response([resp['response'] for resp in responses], request)
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
print(f"Mejor respuesta seleccionada: {best_response}")
|
96 |
+
|
97 |
return {
|
98 |
"best_response": best_response,
|
99 |
+
"all_responses": [resp['response'] for resp in responses],
|
100 |
+
"literal_inputs": [resp['literal'] for resp in responses]
|
101 |
}
|
102 |
|
103 |
if __name__ == "__main__":
|