Spaces:
Build error
Build error
use in memory chroma client
Browse files- .gitignore +2 -1
- app.py +14 -42
.gitignore
CHANGED
@@ -2,4 +2,5 @@
|
|
2 |
chroma_data/
|
3 |
__pycache__/
|
4 |
chroma.log
|
5 |
-
.venv/
|
|
|
|
2 |
chroma_data/
|
3 |
__pycache__/
|
4 |
chroma.log
|
5 |
+
.venv/
|
6 |
+
pad.py
|
app.py
CHANGED
@@ -38,7 +38,9 @@ hf_token, yi_token = load_env_variables()
|
|
38 |
def clear_cuda_cache():
|
39 |
torch.cuda.empty_cache()
|
40 |
|
41 |
-
client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
|
|
|
|
42 |
|
43 |
class EmbeddingGenerator:
|
44 |
def __init__(self, model_name: str, token: str, intention_client):
|
@@ -125,59 +127,29 @@ def load_documents(file_path: str, mode: str = "elements"):
|
|
125 |
docs = loader.load()
|
126 |
return [doc.page_content for doc in docs]
|
127 |
|
128 |
-
def wait_for_chroma_server(client, retries=10, delay=0.5):
|
129 |
-
for _ in range(retries):
|
130 |
-
try:
|
131 |
-
client.heartbeat()
|
132 |
-
print("Chroma server is up and running!")
|
133 |
-
return True
|
134 |
-
except Exception as e:
|
135 |
-
print(f"Attempt to connect to Chroma server failed: {e}")
|
136 |
-
time.sleep(delay)
|
137 |
-
print("Failed to connect to Chroma server after multiple attempts.")
|
138 |
-
return False
|
139 |
-
|
140 |
def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
if not wait_for_chroma_server(client):
|
147 |
-
raise ConnectionError("Could not connect to Chroma server. Ensure it is running.")
|
148 |
-
|
149 |
-
client.reset() # Empties and completely resets the database
|
150 |
-
collection = client.create_collection(collection_name)
|
151 |
-
return client, collection
|
152 |
-
|
153 |
-
def add_documents_to_chroma(client, collection, documents: list, embedding_function: MyEmbeddingFunction):
|
154 |
for doc in documents:
|
155 |
embeddings, metadata = embedding_function.embedding_generator.compute_embeddings(doc)
|
156 |
for embedding, meta in zip(embeddings, metadata):
|
157 |
-
|
158 |
ids=[str(uuid.uuid1())],
|
159 |
documents=[doc],
|
160 |
embeddings=[embedding],
|
161 |
metadatas=[meta]
|
162 |
)
|
163 |
-
|
164 |
-
def query_chroma(client, collection_name: str, query_text: str, embedding_function: MyEmbeddingFunction):
|
165 |
-
# Compute query embeddings and metadata
|
166 |
-
query_embeddings, query_metadata = embedding_function.embedding_generator.compute_embeddings(query_text)
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
query_embeddings=query_embeddings,
|
174 |
-
query_metadata=query_metadata
|
175 |
)
|
176 |
-
|
177 |
return result_docs
|
178 |
|
179 |
-
|
180 |
-
|
181 |
# Initialize clients
|
182 |
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
183 |
embedding_generator = EmbeddingGenerator(model_name=model_name, token=hf_token, intention_client=intention_client)
|
@@ -246,5 +218,5 @@ with gr.Blocks() as demo:
|
|
246 |
query_button.click(query_documents, inputs=query_input, outputs=query_output)
|
247 |
|
248 |
if __name__ == "__main__":
|
249 |
-
os.system("chroma run --host localhost --port 8000 &")
|
250 |
demo.launch()
|
|
|
38 |
def clear_cuda_cache():
|
39 |
torch.cuda.empty_cache()
|
40 |
|
41 |
+
client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
42 |
+
chroma_client = HttpClient(host="localhost", port=8000)
|
43 |
+
chroma_collection = chroma_client.create_collection("all-my-documents")
|
44 |
|
45 |
class EmbeddingGenerator:
|
46 |
def __init__(self, model_name: str, token: str, intention_client):
|
|
|
127 |
docs = loader.load()
|
128 |
return [doc.page_content for doc in docs]
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):
|
131 |
+
db = Chroma(client=chroma_client, collection_name=collection_name, embedding_function=embedding_function)
|
132 |
+
return db
|
133 |
+
|
134 |
+
def add_documents_to_chroma(documents: list, embedding_function: MyEmbeddingFunction):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
for doc in documents:
|
136 |
embeddings, metadata = embedding_function.embedding_generator.compute_embeddings(doc)
|
137 |
for embedding, meta in zip(embeddings, metadata):
|
138 |
+
chroma_collection.add(
|
139 |
ids=[str(uuid.uuid1())],
|
140 |
documents=[doc],
|
141 |
embeddings=[embedding],
|
142 |
metadatas=[meta]
|
143 |
)
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
def query_chroma(query_text: str, embedding_function: MyEmbeddingFunction):
|
146 |
+
query_embeddings, query_metadata = embedding_function.embedding_generator.compute_embeddings(query_text)
|
147 |
+
result_docs = chroma_collection.query(
|
148 |
+
query_texts=[query_text],
|
149 |
+
n_results=2
|
|
|
|
|
150 |
)
|
|
|
151 |
return result_docs
|
152 |
|
|
|
|
|
153 |
# Initialize clients
|
154 |
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
|
155 |
embedding_generator = EmbeddingGenerator(model_name=model_name, token=hf_token, intention_client=intention_client)
|
|
|
218 |
query_button.click(query_documents, inputs=query_input, outputs=query_output)
|
219 |
|
220 |
if __name__ == "__main__":
|
221 |
+
# os.system("chroma run --host localhost --port 8000 &")
|
222 |
demo.launch()
|