Spaces:
Runtime error
Runtime error
import spaces | |
import subprocess | |
# Install flash attention, skipping CUDA build if necessary | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
import os | |
import time | |
import imageio | |
import numpy as np | |
import torch | |
import rembg | |
from PIL import Image | |
from torchvision.transforms import v2 | |
from pytorch_lightning import seed_everything | |
from omegaconf import OmegaConf | |
from einops import rearrange, repeat | |
from tqdm import tqdm | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
# Imports for InstantMesh | |
import shutil | |
from src.utils.train_util import instantiate_from_config | |
from src.utils.camera_util import ( | |
FOV_to_intrinsics, | |
get_zero123plus_input_cameras, | |
get_circular_camera_poses, | |
) | |
from src.utils.mesh_util import save_obj, save_glb | |
from src.utils.infer_util import remove_background, resize_foreground, images_to_video | |
import tempfile | |
from functools import partial | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
# Imports for MeshAnythingv2 | |
from accelerate.utils import set_seed | |
from accelerate import Accelerator | |
from main import load_v2 | |
from mesh_to_pc import process_mesh_to_pc | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d.art3d import Poly3DCollection | |
############################################################################### | |
# Configuration for InstantMesh | |
############################################################################### | |
def get_render_cameras( | |
batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False | |
): | |
""" | |
Get the rendering camera parameters. | |
""" | |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) | |
if is_flexicubes: | |
cameras = torch.linalg.inv(c2ws) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
else: | |
extrinsics = c2ws.flatten(-2) | |
intrinsics = ( | |
FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) | |
) | |
cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
return cameras | |
def images_to_video(images, output_path, fps=30): | |
# images: (N, C, H, W) | |
os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
frames = [] | |
for i in range(images.shape[0]): | |
frame = ( | |
(images[i].permute(1, 2, 0).cpu().numpy() * 255) | |
.astype(np.uint8) | |
.clip(0, 255) | |
) | |
assert ( | |
frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3] | |
), f"Frame shape mismatch: {frame.shape} vs {images.shape}" | |
assert ( | |
frame.min() >= 0 and frame.max() <= 255 | |
), f"Frame value out of range: {frame.min()} ~ {frame.max()}" | |
frames.append(frame) | |
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec="h264") | |
def find_cuda(): | |
# Check if CUDA_HOME or CUDA_PATH environment variables are set | |
cuda_home = os.environ.get("CUDA_HOME") or os.environ.get("CUDA_PATH") | |
if cuda_home and os.path.exists(cuda_home): | |
return cuda_home | |
# Search for the nvcc executable in the system's PATH | |
nvcc_path = shutil.which("nvcc") | |
if nvcc_path: | |
# Remove the 'bin/nvcc' part to get the CUDA installation path | |
cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | |
return cuda_path | |
return None | |
cuda_path = find_cuda() | |
if cuda_path: | |
print(f"CUDA installation found at: {cuda_path}") | |
else: | |
print("CUDA installation not found") | |
config_path = "configs/instant-mesh-large.yaml" | |
config = OmegaConf.load(config_path) | |
config_name = os.path.basename(config_path).replace(".yaml", "") | |
model_config = config.model_config | |
infer_config = config.infer_config | |
IS_FLEXICUBES = True if config_name.startswith("instant-mesh") else False | |
device = torch.device("cuda") | |
# load diffusion model | |
print("Loading diffusion model ...") | |
pipeline = DiffusionPipeline.from_pretrained( | |
"sudo-ai/zero123plus-v1.2", | |
custom_pipeline="zero123plus", | |
torch_dtype=torch.float16, | |
) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipeline.scheduler.config, timestep_spacing="trailing" | |
) | |
# load custom white-background UNet | |
unet_ckpt_path = hf_hub_download( | |
repo_id="TencentARC/InstantMesh", | |
filename="diffusion_pytorch_model.bin", | |
repo_type="model", | |
) | |
state_dict = torch.load(unet_ckpt_path, map_location="cpu") | |
pipeline.unet.load_state_dict(state_dict, strict=True) | |
pipeline = pipeline.to(device) | |
# load reconstruction model | |
print("Loading reconstruction model ...") | |
model_ckpt_path = hf_hub_download( | |
repo_id="TencentARC/InstantMesh", | |
filename="instant_mesh_large.ckpt", | |
repo_type="model", | |
) | |
model = instantiate_from_config(model_config) | |
state_dict = torch.load(model_ckpt_path, map_location="cpu")["state_dict"] | |
state_dict = { | |
k[14:]: v | |
for k, v in state_dict.items() | |
if k.startswith("lrm_generator.") and "source_camera" not in k | |
} | |
model.load_state_dict(state_dict, strict=True) | |
model = model.to(device) | |
print("Loading Finished!") | |
def check_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
def preprocess(input_image, do_remove_background): | |
rembg_session = rembg.new_session() if do_remove_background else None | |
if do_remove_background: | |
input_image = remove_background(input_image, rembg_session) | |
input_image = resize_foreground(input_image, 0.85) | |
return input_image | |
def generate_mvs(input_image, sample_steps, sample_seed): | |
seed_everything(sample_seed) | |
# sampling | |
z123_image = pipeline(input_image, num_inference_steps=sample_steps).images[0] | |
show_image = np.asarray(z123_image, dtype=np.uint8) | |
show_image = torch.from_numpy(show_image) # (960, 640, 3) | |
show_image = rearrange(show_image, "(n h) (m w) c -> (n m) h w c", n=3, m=2) | |
show_image = rearrange(show_image, "(n m) h w c -> (n h) (m w) c", n=2, m=3) | |
show_image = Image.fromarray(show_image.numpy()) | |
return z123_image, show_image | |
def make3d(images): | |
global model | |
if IS_FLEXICUBES: | |
model.init_flexicubes_geometry(device, use_renderer=False) | |
model = model.eval() | |
images = np.asarray(images, dtype=np.float32) / 255.0 | |
images = ( | |
torch.from_numpy(images).permute(2, 0, 1).contiguous().float() | |
) # (3, 960, 640) | |
images = rearrange( | |
images, "c (n h) (m w) -> (n m) c h w", n=3, m=2 | |
) # (6, 3, 320, 320) | |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) | |
render_cameras = get_render_cameras( | |
batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES | |
).to(device) | |
images = images.unsqueeze(0).to(device) | |
images = v2.functional.resize( | |
images, (320, 320), interpolation=3, antialias=True | |
).clamp(0, 1) | |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name | |
print(mesh_fpath) | |
mesh_basename = os.path.basename(mesh_fpath).split(".")[0] | |
mesh_dirname = os.path.dirname(mesh_fpath) | |
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") | |
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") | |
with torch.no_grad(): | |
# get triplane | |
planes = model.forward_planes(images, input_cameras) | |
# get mesh | |
mesh_out = model.extract_mesh( | |
planes, | |
use_texture_map=False, | |
**infer_config, | |
) | |
vertices, faces, vertex_colors = mesh_out | |
vertices = vertices[:, [1, 2, 0]] | |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) | |
save_obj(vertices, faces, vertex_colors, mesh_fpath) | |
print(f"Mesh saved to {mesh_fpath}") | |
return mesh_fpath, mesh_glb_fpath | |
############################################################################### | |
# Configuration for MeshAnythingv2 | |
############################################################################### | |
model = load_v2() | |
device = torch.device("cuda") | |
accelerator = Accelerator( | |
mixed_precision="fp16", | |
) | |
model = accelerator.prepare(model) | |
model.eval() | |
print("Model loaded to device") | |
def wireframe_render(mesh): | |
views = [(90, 20), (270, 20)] | |
mesh.vertices = mesh.vertices[:, [0, 2, 1]] | |
bounding_box = mesh.bounds | |
center = mesh.centroid | |
scale = np.ptp(bounding_box, axis=0).max() | |
fig = plt.figure(figsize=(10, 10)) | |
# Function to render and return each view as an image | |
def render_view(mesh, azimuth, elevation): | |
ax = fig.add_subplot(111, projection="3d") | |
ax.set_axis_off() | |
# Extract vertices and faces for plotting | |
vertices = mesh.vertices | |
faces = mesh.faces | |
# Plot faces | |
ax.add_collection3d( | |
Poly3DCollection( | |
vertices[faces], | |
facecolors=(0.8, 0.5, 0.2, 1.0), # Brownish yellow | |
edgecolors="k", | |
linewidths=0.5, | |
) | |
) | |
# Set limits and center the view on the object | |
ax.set_xlim(center[0] - scale / 2, center[0] + scale / 2) | |
ax.set_ylim(center[1] - scale / 2, center[1] + scale / 2) | |
ax.set_zlim(center[2] - scale / 2, center[2] + scale / 2) | |
# Set view angle | |
ax.view_init(elev=elevation, azim=azimuth) | |
# Save the figure to a buffer | |
buf = io.BytesIO() | |
plt.savefig(buf, format="png", bbox_inches="tight", pad_inches=0, dpi=300) | |
plt.clf() | |
buf.seek(0) | |
return Image.open(buf) | |
# Render each view and store in a list | |
images = [render_view(mesh, az, el) for az, el in views] | |
# Combine images horizontally | |
widths, heights = zip(*(i.size for i in images)) | |
total_width = sum(widths) | |
max_height = max(heights) | |
combined_image = Image.new("RGBA", (total_width, max_height)) | |
x_offset = 0 | |
for img in images: | |
combined_image.paste(img, (x_offset, 0)) | |
x_offset += img.width | |
# Save the combined image | |
save_path = f"combined_mesh_view_{int(time.time())}.png" | |
combined_image.save(save_path) | |
plt.close(fig) | |
return save_path | |
def do_inference(input_3d, sample_seed=0, do_sampling=False, do_marching_cubes=False): | |
set_seed(sample_seed) | |
print("Seed value:", sample_seed) | |
input_mesh = trimesh.load(input_3d) | |
pc_list, mesh_list = process_mesh_to_pc( | |
[input_mesh], marching_cubes=do_marching_cubes | |
) | |
pc_normal = pc_list[0] # 4096, 6 | |
mesh = mesh_list[0] | |
vertices = mesh.vertices | |
pc_coor = pc_normal[:, :3] | |
normals = pc_normal[:, 3:] | |
bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)]) | |
# scale mesh and pc | |
vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2 | |
vertices = vertices / (bounds[1] - bounds[0]).max() | |
mesh.vertices = vertices | |
pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2 | |
pc_coor = pc_coor / (bounds[1] - bounds[0]).max() | |
mesh.merge_vertices() | |
mesh.update_faces(mesh.nondegenerate_faces()) | |
mesh.update_faces(mesh.unique_faces()) | |
mesh.remove_unreferenced_vertices() | |
mesh.fix_normals() | |
try: | |
if mesh.visual.vertex_colors is not None: | |
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8) | |
mesh.visual.vertex_colors = np.tile( | |
orange_color, (mesh.vertices.shape[0], 1) | |
) | |
else: | |
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8) | |
mesh.visual.vertex_colors = np.tile( | |
orange_color, (mesh.vertices.shape[0], 1) | |
) | |
except Exception as e: | |
print(e) | |
input_save_name = f"processed_input_{int(time.time())}.obj" | |
mesh.export(input_save_name) | |
input_render_res = wireframe_render(mesh) | |
pc_coor = pc_coor / np.abs(pc_coor).max() * 0.99 # input should be from -1 to 1 | |
assert ( | |
np.linalg.norm(normals, axis=-1) > 0.99 | |
).all(), "normals should be unit vectors, something wrong" | |
normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16) | |
input = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None] | |
print("Data loaded") | |
# with accelerator.autocast(): | |
with accelerator.autocast(): | |
outputs = model(input, do_sampling) | |
print("Model inference done") | |
recon_mesh = outputs[0] | |
valid_mask = torch.all(~torch.isnan(recon_mesh.reshape((-1, 9))), dim=1) | |
recon_mesh = recon_mesh[valid_mask] # nvalid_face x 3 x 3 | |
vertices = recon_mesh.reshape(-1, 3).cpu() | |
vertices_index = np.arange(len(vertices)) # 0, 1, ..., 3 x face | |
triangles = vertices_index.reshape(-1, 3) | |
artist_mesh = trimesh.Trimesh( | |
vertices=vertices, faces=triangles, force="mesh", merge_primitives=True | |
) | |
artist_mesh.merge_vertices() | |
artist_mesh.update_faces(artist_mesh.nondegenerate_faces()) | |
artist_mesh.update_faces(artist_mesh.unique_faces()) | |
artist_mesh.remove_unreferenced_vertices() | |
artist_mesh.fix_normals() | |
if artist_mesh.visual.vertex_colors is not None: | |
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8) | |
artist_mesh.visual.vertex_colors = np.tile( | |
orange_color, (artist_mesh.vertices.shape[0], 1) | |
) | |
else: | |
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8) | |
artist_mesh.visual.vertex_colors = np.tile( | |
orange_color, (artist_mesh.vertices.shape[0], 1) | |
) | |
num_faces = len(artist_mesh.faces) | |
brown_color = np.array([165, 42, 42, 255], dtype=np.uint8) | |
face_colors = np.tile(brown_color, (num_faces, 1)) | |
artist_mesh.visual.face_colors = face_colors | |
# add time stamp to avoid cache | |
save_name = f"output_{int(time.time())}.obj" | |
artist_mesh.export(save_name) | |
output_render = wireframe_render(artist_mesh) | |
return input_save_name, input_render_res, save_name, output_render | |
# Output gradio | |
output_model_obj = gr.Model3D( | |
label="Generated Mesh (OBJ Format)", | |
display_mode="wireframe", | |
clear_color=[1, 1, 1, 1], | |
) | |
preprocess_model_obj = gr.Model3D( | |
label="Processed Input Mesh (OBJ Format)", | |
display_mode="wireframe", | |
clear_color=[1, 1, 1, 1], | |
) | |
input_image_render = gr.Image( | |
label="Wireframe Render of Processed Input Mesh", | |
) | |
output_image_render = gr.Image( | |
label="Wireframe Render of Generated Mesh", | |
) | |
############################################################################### | |
# Gradio | |
############################################################################### | |
HEADER = """ | |
# Generate 3D Assets for Roblox | |
With this Space, you can generate 3D Assets using AI for your Roblox game for free. | |
Simply follow the 3 steps below. | |
1. Generate a 3D Mesh using an image model as input. | |
2. Simplify the Mesh to get lower polygon number. | |
3. Download the model and import it in Roblox. | |
We wrote a tutorial here | |
""" | |
STEP1_HEADER = """ | |
## Step 1: Generate the 3D Mesh | |
For this step, we use <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>InstantMesh</a>, an open-source model for **fast** feedforward 3D mesh generation from a single image. | |
During this step, you need to upload an image of what you want to generate a 3D Model from. | |
## 💡 Tips | |
- If there's a background, ✅ Remove background. | |
- The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42). | |
""" | |
STEP2_HEADER = """ | |
## Step 2: Simplify the generated 3D Mesh | |
ADD ILLUSTRATION | |
The 3D Mesh Generated contains too much polygons, fortunately, we can use another AI model to help us optimize it. | |
The model we use is called [MeshAnythingV2](). | |
## 💡 Tips | |
- We don't click on Preprocess with marching Cubes, because in the last step the input mesh was produced by it. | |
- Limited by computational resources, MeshAnything is trained on meshes with fewer than 1600 faces and cannot generate meshes with more than 1600 faces. The shape of the input mesh should be sharp enough; otherwise, it will be challenging to represent it with only 1600 faces. Thus, feed-forward image-to-3D methods may often produce bad results due to insufficient shape quality. | |
""" | |
STEP3_HEADER = """ | |
## Step 3 (optional): Shader Smooth | |
- The mesh simplified in step 2, looks low poly. One way to make it more smooth is to use Shader Smooth. | |
- You can usually do it in Blender, but we can do it directly here | |
ADD ILLUSTRATION | |
ADD SHADERSMOOTH | |
""" | |
STEP4_HEADER = """ | |
## Step 4: Get the Mesh Material | |
""" | |
with gr.Blocks() as demo: | |
gr.Markdown(HEADER) | |
gr.Markdown(STEP1_HEADER) | |
with gr.Row(variant="panel"): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image( | |
label="Input Image", | |
image_mode="RGBA", | |
sources="upload", | |
type="pil", | |
elem_id="content_image", | |
) | |
processed_image = gr.Image( | |
label="Processed Image", | |
image_mode="RGBA", | |
type="pil", | |
interactive=False, | |
) | |
with gr.Row(): | |
with gr.Group(): | |
do_remove_background = gr.Checkbox( | |
label="Remove Background", value=True | |
) | |
sample_seed = gr.Number(value=42, label="Seed Value", precision=0) | |
sample_steps = gr.Slider( | |
label="Sample Steps", minimum=30, maximum=75, value=75, step=5 | |
) | |
with gr.Row(): | |
step1_submit = gr.Button( | |
"Generate", elem_id="generate", variant="primary" | |
) | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
mv_show_images = gr.Image( | |
label="Generated Multi-views", | |
type="pil", | |
width=379, | |
interactive=False, | |
) | |
with gr.Column(): | |
with gr.Tab("OBJ"): | |
output_model_obj = gr.Model3D( | |
label="Output Model (OBJ Format)", | |
interactive=False, | |
) | |
gr.Markdown( | |
"Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage." | |
) | |
with gr.Tab("GLB"): | |
output_model_glb = gr.Model3D( | |
label="Output Model (GLB Format)", | |
interactive=False, | |
) | |
gr.Markdown( | |
"Note: The model shown here has a darker appearance. Download to get correct results." | |
) | |
gr.Markdown( | |
"""Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).""" | |
) | |
gr.Markdown(STEP2_HEADER) | |
with gr.Row(variant="panel"): | |
with gr.Column(): | |
with gr.Row(): | |
input_3d = gr.Model3D( | |
label="Input Mesh", | |
display_mode="wireframe", | |
clear_color=[1, 1, 1, 1], | |
) | |
with gr.Row(): | |
with gr.Group(): | |
do_marching_cubes = gr.Checkbox( | |
label="Preprocess with Marching Cubes", value=False | |
) | |
do_sampling = gr.Checkbox(label="Random Sampling", value=False) | |
sample_seed = gr.Number(value=0, label="Seed Value", precision=0) | |
with gr.Row(): | |
step2_submit = gr.Button( | |
"Generate", elem_id="generate", variant="primary" | |
) | |
with gr.Row(variant="panel"): | |
mesh_examples = gr.Examples( | |
examples=[ | |
os.path.join("examples", img_name) | |
for img_name in sorted(os.listdir("examples")) | |
], | |
inputs=input_3d, | |
outputs=[ | |
preprocess_model_obj, | |
input_image_render, | |
output_model_obj, | |
output_image_render, | |
], | |
fn=do_inference, | |
cache_examples=False, | |
examples_per_page=10, | |
) | |
with gr.Column(): | |
with gr.Row(): | |
input_image_render.render() | |
with gr.Row(): | |
with gr.Tab("OBJ"): | |
preprocess_model_obj.render() | |
with gr.Row(): | |
output_image_render.render() | |
with gr.Row(): | |
with gr.Tab("OBJ"): | |
output_model_obj.render() | |
with gr.Row(): | |
gr.Markdown( | |
"""Try click random sampling and different <b>Seed Value</b> if the result is unsatisfying""" | |
) | |
gr.Markdown(STEP3_HEADER) | |
gr.Markdown(STEP4_HEADER) | |
mv_images = gr.State() | |
step1_submit.click(fn=check_input_image, inputs=[input_image]).success( | |
fn=preprocess, | |
inputs=[input_image, do_remove_background], | |
outputs=[processed_image], | |
).success( | |
fn=generate_mvs, | |
inputs=[processed_image, sample_steps, sample_seed], | |
outputs=[mv_images, mv_show_images], | |
).success( | |
fn=make3d, inputs=[mv_images], outputs=[output_model_obj, output_model_glb] | |
) | |
step2_submit.click( | |
fn=do_inference, | |
inputs=[input_3d, sample_seed, do_sampling, do_marching_cubes], | |
outputs=[ | |
preprocess_model_obj, | |
input_image_render, | |
output_model_obj, | |
output_image_render, | |
], | |
) | |
demo.queue(max_size=10) | |
demo.launch() | |