|
import os |
|
import gradio as gr |
|
import json |
|
from huggingface_hub import InferenceClient |
|
import gspread |
|
from google.oauth2 import service_account |
|
from datetime import datetime |
|
import chromadb |
|
|
|
|
|
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"] |
|
key1 = os.getenv("key1") |
|
key2 = os.getenv("key2") |
|
key3 = os.getenv("key3") |
|
key4 = os.getenv("key4") |
|
key5 = os.getenv("key5") |
|
key6 = os.getenv("key6") |
|
key7 = os.getenv("key7") |
|
key8 = os.getenv("key8") |
|
key9 = os.getenv("key9") |
|
key10 = os.getenv("key10") |
|
key11 = os.getenv("key11") |
|
key12 = os.getenv("key12") |
|
key13 = os.getenv("key13") |
|
key14 = os.getenv("key14") |
|
key15 = os.getenv("key15") |
|
key16 = os.getenv("key16") |
|
key17 = os.getenv("key17") |
|
key18 = os.getenv("key18") |
|
key19 = os.getenv("key19") |
|
key20 = os.getenv("key20") |
|
key21 = os.getenv("key21") |
|
key22 = os.getenv("key22") |
|
key23 = os.getenv("key23") |
|
key24 = os.getenv("key24") |
|
key25 = os.getenv("key25") |
|
key26 = os.getenv("key26") |
|
key27 = os.getenv("key27") |
|
key28 = os.getenv("key28") |
|
pkey="-----BEGIN PRIVATE KEY-----\n"+key2+"\n"+key3+"\n"+ key4+"\n"+key5+"\n"+ key6+"\n"+key7+"\n"+key8+"\n"+key9+"\n"+key10+"\n"+key11+"\n"+key12+"\n"+key13+"\n"+key14+"\n"+key15+"\n"+key16+"\n"+key17+"\n"+key18+"\n"+key19+"\n"+key20+"\n"+key21+"\n"+key22+"\n"+key24+"\n"+key25+"\n"+key26+"\n"+key27+"\n"+key28+"\n-----END PRIVATE KEY-----\n" |
|
json_data={ |
|
"type": "service_account", |
|
"project_id": "nestolechatbot", |
|
"private_key_id": key1, |
|
"private_key": pkey, |
|
"client_email": "[email protected]", |
|
"client_email": "[email protected]", |
|
"client_id": "107457262210035412036", |
|
"auth_uri": "https://accounts.google.com/o/oauth2/auth", |
|
"token_uri": "https://oauth2.googleapis.com/token", |
|
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", |
|
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/nestoleservice%40nestolechatbot.iam.gserviceaccount.com", |
|
"universe_domain": "googleapis.com" |
|
} |
|
creds = service_account.Credentials.from_service_account_info(json_data, scopes=scope) |
|
|
|
client = gspread.authorize(creds) |
|
sheet = client.open("nestolechatbot").sheet1 |
|
|
|
def save_to_sheet(date, name, message, IP, dev, header): |
|
|
|
sheet.append_row([date, name, message, IP, dev, header]) |
|
return f"Thanks {name}, your message has been saved!" |
|
|
|
path='/Users/thiloid/Desktop/LSKI/ole_nest/Chatbot/LLM/chromaTS' |
|
if not os.path.exists(path): |
|
path = "/home/user/app/chromaTS" |
|
|
|
print(path) |
|
client = chromadb.PersistentClient(path=path) |
|
print(client.heartbeat()) |
|
print(client.get_version()) |
|
print(client.list_collections()) |
|
|
|
from chromadb.utils import embedding_functions |
|
default_ef = embedding_functions.DefaultEmbeddingFunction() |
|
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer") |
|
|
|
collection = client.get_collection(name="chromaTS", embedding_function=sentence_transformer_ef) |
|
|
|
inference_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") |
|
|
|
def extract_ip_and_device(headers_obj): |
|
ip_address = None |
|
device_info = None |
|
|
|
|
|
headers = headers_obj.raw |
|
|
|
for header in headers: |
|
if len(header) != 2: |
|
print(f"Unexpected header format: {header}") |
|
continue |
|
|
|
key, value = header |
|
|
|
if key == b'x-forwarded-for': |
|
ip_address = value.decode('utf-8') |
|
elif key == b'user-agent': |
|
device_info = value.decode('utf-8') |
|
|
|
return ip_address, device_info |
|
|
|
def format_prompt(message, history): |
|
print("HISTORY") |
|
print(history) |
|
prompt = "" |
|
if history: |
|
user_prompt, bot_response = history[-1] |
|
prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
print("Final P") |
|
print(prompt) |
|
return prompt |
|
|
|
def response(request: gr.Request,prompt, history, temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0): |
|
global_url = "" |
|
|
|
js_code = """ |
|
<script> |
|
function extractUrl() { |
|
return window.location.href; |
|
} |
|
</script> |
|
""" |
|
|
|
|
|
url_script = '<script>var url = extractUrl(); document.getElementById("url").innerText = url;</script>' |
|
url_extracted = "<div id='url'></div>" |
|
|
|
print(f"Working with URL: {url_extracted}") |
|
headers = request.headers |
|
IP, dev = extract_ip_and_device(headers) |
|
print(headers) |
|
temperature = float(temperature) |
|
if temperature < 1e-2: temperature = 1e-2 |
|
top_p = float(top_p) |
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
search_prompt = format_prompt(prompt, history) |
|
results = collection.query( |
|
query_texts=[search_prompt], |
|
n_results=60, |
|
) |
|
dists = ["<br><small>(relevance: " + str(round((1-d)*100)/100) + ";" for d in results['distances'][0]] |
|
results = results['documents'][0] |
|
combination = zip(results, dists) |
|
combination = [' '.join(triplets) for triplets in combination] |
|
if len(results) > 1: |
|
addon = "Bitte berücksichtige bei deiner Antwort ausschießlich folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n" + "\n".join(results) |
|
system = "Du bist ein deutschsprachiges KI-basiertes Studienberater Assistenzsystem, das zu jedem Anliegen möglichst geeignete Studieninformationen empfiehlt." + addon + "\n\nUser-Anliegen:" |
|
formatted_prompt = format_prompt(system + "\n" + prompt, history) |
|
stream = inference_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream: |
|
output += response.token.text |
|
yield output |
|
now = str(datetime.now()) |
|
save_to_sheet(now, prompt, output, IP, dev, str(headers)) |
|
yield output |
|
|
|
gr.ChatInterface( |
|
response, |
|
chatbot=gr.Chatbot(value=[[None, "Herzlich willkommen! Ich bin Chätti ein KI-basiertes Studienassistenzsystem, das für jede Anfrage die am besten Studieninformationen empfiehlt.<br>Erzähle mir, was du gerne tust!"]], render_markdown=True), |
|
title="German Studyhelper Chätti" |
|
).queue().launch(share=True) |
|
|
|
print("Interface up and running!") |