Update appStore/target.py
Browse files- appStore/target.py +352 -352
appStore/target.py
CHANGED
@@ -1,368 +1,368 @@
|
|
1 |
-
# set path
|
2 |
-
import glob, os, sys;
|
3 |
-
sys.path.append('../utils')
|
4 |
-
|
5 |
-
#import needed libraries
|
6 |
-
import seaborn as sns
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import numpy as np
|
9 |
-
import pandas as pd
|
10 |
-
import streamlit as st
|
11 |
-
from st_aggrid import AgGrid
|
12 |
-
from utils.target_classifier import load_targetClassifier, target_classification
|
13 |
-
import logging
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
-
from utils.config import get_classifier_params
|
16 |
-
from io import BytesIO
|
17 |
-
import xlsxwriter
|
18 |
-
import plotly.express as px
|
19 |
-
from pandas.api.types import (
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
# Declare all the necessary variables
|
27 |
-
classifier_identifier = 'target'
|
28 |
-
params = get_classifier_params(classifier_identifier)
|
29 |
-
|
30 |
-
## Labels dictionary ###
|
31 |
-
_lab_dict = {
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
# # @st.cache_data
|
37 |
-
# def to_excel(df):
|
38 |
-
# # df['Target Validation'] = 'No'
|
39 |
-
# # df['Netzero Validation'] = 'No'
|
40 |
-
# # df['GHG Validation'] = 'No'
|
41 |
-
# # df['Adapt-Mitig Validation'] = 'No'
|
42 |
-
# # df['Sector'] = 'No'
|
43 |
-
# len_df = len(df)
|
44 |
-
# output = BytesIO()
|
45 |
-
# writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
46 |
-
# df.to_excel(writer, index=False, sheet_name='rawdata')
|
47 |
-
# if 'target_hits' in st.session_state:
|
48 |
-
# target_hits = st.session_state['target_hits']
|
49 |
-
# if 'keep' in target_hits.columns:
|
50 |
-
|
51 |
-
# target_hits = target_hits[target_hits.keep == True]
|
52 |
-
# target_hits = target_hits.reset_index(drop=True)
|
53 |
-
# target_hits.drop(columns = ['keep'], inplace=True)
|
54 |
-
# target_hits.to_excel(writer,index=False,sheet_name = 'Target')
|
55 |
-
# else:
|
56 |
-
|
57 |
-
# target_hits = target_hits.sort_values(by=['Target Score'], ascending=False)
|
58 |
-
# target_hits = target_hits.reset_index(drop=True)
|
59 |
-
# target_hits.to_excel(writer,index=False,sheet_name = 'Target')
|
60 |
-
|
61 |
-
# else:
|
62 |
-
# target_hits = df[df['Target Label'] == True]
|
63 |
-
# target_hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label',
|
64 |
-
# 'Action Score','Policies_Plans Label','Indicator Label',
|
65 |
-
# 'Policies_Plans Score','Conditional Score'],inplace=True)
|
66 |
-
# target_hits = target_hits.sort_values(by=['Target Score'], ascending=False)
|
67 |
-
# target_hits = target_hits.reset_index(drop=True)
|
68 |
-
# target_hits.to_excel(writer,index=False,sheet_name = 'Target')
|
69 |
-
|
70 |
-
|
71 |
-
# if 'action_hits' in st.session_state:
|
72 |
-
# action_hits = st.session_state['action_hits']
|
73 |
-
# if 'keep' in action_hits.columns:
|
74 |
-
# action_hits = action_hits[action_hits.keep == True]
|
75 |
-
# action_hits = action_hits.reset_index(drop=True)
|
76 |
-
# action_hits.drop(columns = ['keep'], inplace=True)
|
77 |
-
# action_hits.to_excel(writer,index=False,sheet_name = 'Action')
|
78 |
-
# else:
|
79 |
-
# action_hits = action_hits.sort_values(by=['Action Score'], ascending=False)
|
80 |
-
# action_hits = action_hits.reset_index(drop=True)
|
81 |
-
# action_hits.to_excel(writer,index=False,sheet_name = 'Action')
|
82 |
-
# else:
|
83 |
-
# action_hits = df[df['Action Label'] == True]
|
84 |
-
# action_hits.drop(columns=['Target Label','Target Score','Netzero Score',
|
85 |
-
# 'Netzero Label','GHG Label',
|
86 |
-
# 'GHG Score','Action Label','Policies_Plans Label',
|
87 |
-
# 'Policies_Plans Score','Conditional Score'],inplace=True)
|
88 |
-
# action_hits = action_hits.sort_values(by=['Action Score'], ascending=False)
|
89 |
-
# action_hits = action_hits.reset_index(drop=True)
|
90 |
-
# action_hits.to_excel(writer,index=False,sheet_name = 'Action')
|
91 |
|
92 |
-
# # hits = hits.drop(columns = ['Target Score','Netzero Score','GHG Score'])
|
93 |
-
# workbook = writer.book
|
94 |
-
# # worksheet = writer.sheets['Sheet1']
|
95 |
-
# # worksheet.data_validation('L2:L{}'.format(len_df),
|
96 |
-
# # {'validate': 'list',
|
97 |
-
# # 'source': ['No', 'Yes', 'Discard']})
|
98 |
-
# # worksheet.data_validation('M2:L{}'.format(len_df),
|
99 |
-
# # {'validate': 'list',
|
100 |
-
# # 'source': ['No', 'Yes', 'Discard']})
|
101 |
-
# # worksheet.data_validation('N2:L{}'.format(len_df),
|
102 |
-
# # {'validate': 'list',
|
103 |
-
# # 'source': ['No', 'Yes', 'Discard']})
|
104 |
-
# # worksheet.data_validation('O2:L{}'.format(len_df),
|
105 |
-
# # {'validate': 'list',
|
106 |
-
# # 'source': ['No', 'Yes', 'Discard']})
|
107 |
-
# # worksheet.data_validation('P2:L{}'.format(len_df),
|
108 |
-
# # {'validate': 'list',
|
109 |
-
# # 'source': ['No', 'Yes', 'Discard']})
|
110 |
-
# writer.save()
|
111 |
-
# processed_data = output.getvalue()
|
112 |
-
# return processed_data
|
113 |
-
|
114 |
-
def app():
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
|
134 |
-
# def target_display():
|
135 |
|
136 |
-
# if 'key1' in st.session_state:
|
137 |
-
# df = st.session_state.key1
|
138 |
-
# st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
|
139 |
-
# .format(os.path.basename(st.session_state['filename']),
|
140 |
-
# len(df)))
|
141 |
-
# hits = df[df['Target Label'] == 'TARGET'].reset_index(drop=True)
|
142 |
-
# range_val = min(5,len(hits))
|
143 |
-
# if range_val !=0:
|
144 |
|
145 |
-
# # collecting some statistics
|
146 |
-
# count_target = sum(hits['Target Label'] == 'TARGET')
|
147 |
-
# count_netzero = sum(hits['Netzero Label'] == 'NETZERO TARGET')
|
148 |
-
# count_ghg = sum(hits['GHG Label'] == 'GHG')
|
149 |
-
# count_transport = sum([True if 'Transport' in x else False
|
150 |
-
# for x in hits['Sector Label']])
|
151 |
-
|
152 |
-
# c1, c2 = st.columns([1,1])
|
153 |
-
# with c1:
|
154 |
-
# st.write('**Target Paragraphs**: `{}`'.format(count_target))
|
155 |
-
# st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
|
156 |
-
# with c2:
|
157 |
-
# st.write('**GHG Target Related Paragraphs**: `{}`'.format(count_ghg))
|
158 |
-
# st.write('**Transport Related Paragraphs**: `{}`'.format(count_transport))
|
159 |
-
# # st.write('-------------------')
|
160 |
-
# hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label',
|
161 |
-
# 'Action Score','Policies_Plans Label','Indicator Label',
|
162 |
-
# 'Policies_Plans Score','Conditional Score'],inplace=True)
|
163 |
-
# hits = hits.sort_values(by=['Target Score'], ascending=False)
|
164 |
-
# hits = hits.reset_index(drop=True)
|
165 |
-
|
166 |
-
# # netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
|
167 |
-
# # if not netzerohit.empty:
|
168 |
-
# # netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
|
169 |
-
# # # st.write('-------------------')
|
170 |
-
# # # st.markdown("###### Netzero paragraph ######")
|
171 |
-
# # st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
|
172 |
-
# # netzerohit.iloc[0]['text'].replace("\n", " ")))
|
173 |
-
# # st.write("")
|
174 |
-
# # else:
|
175 |
-
# # st.info("🤔 No Netzero paragraph found")
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
# st.write(
|
216 |
-
# """This app accomodates the blog [here](https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/)
|
217 |
-
# and walks you through one example of how the Streamlit
|
218 |
-
# Data Science Team builds add-on functions to Streamlit.
|
219 |
-
# """
|
220 |
-
# )
|
221 |
-
|
222 |
-
|
223 |
-
# def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
224 |
-
# """
|
225 |
-
# Adds a UI on top of a dataframe to let viewers filter columns
|
226 |
-
|
227 |
-
# Args:
|
228 |
-
# df (pd.DataFrame): Original dataframe
|
229 |
-
|
230 |
-
# Returns:
|
231 |
-
# pd.DataFrame: Filtered dataframe
|
232 |
-
# """
|
233 |
-
# modify = st.checkbox("Add filters")
|
234 |
-
|
235 |
-
# if not modify:
|
236 |
-
# st.session_state['target_hits'] = df
|
237 |
-
# return
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
|
316 |
-
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
|
366 |
-
|
367 |
|
368 |
|
|
|
1 |
+
# # set path
|
2 |
+
# import glob, os, sys;
|
3 |
+
# sys.path.append('../utils')
|
4 |
+
|
5 |
+
# #import needed libraries
|
6 |
+
# import seaborn as sns
|
7 |
+
# import matplotlib.pyplot as plt
|
8 |
+
# import numpy as np
|
9 |
+
# import pandas as pd
|
10 |
+
# import streamlit as st
|
11 |
+
# from st_aggrid import AgGrid
|
12 |
+
# from utils.target_classifier import load_targetClassifier, target_classification
|
13 |
+
# import logging
|
14 |
+
# logger = logging.getLogger(__name__)
|
15 |
+
# from utils.config import get_classifier_params
|
16 |
+
# from io import BytesIO
|
17 |
+
# import xlsxwriter
|
18 |
+
# import plotly.express as px
|
19 |
+
# from pandas.api.types import (
|
20 |
+
# is_categorical_dtype,
|
21 |
+
# is_datetime64_any_dtype,
|
22 |
+
# is_numeric_dtype,
|
23 |
+
# is_object_dtype,
|
24 |
+
# is_list_like)
|
25 |
+
|
26 |
+
# # Declare all the necessary variables
|
27 |
+
# classifier_identifier = 'target'
|
28 |
+
# params = get_classifier_params(classifier_identifier)
|
29 |
+
|
30 |
+
# ## Labels dictionary ###
|
31 |
+
# _lab_dict = {
|
32 |
+
# '0':'NO',
|
33 |
+
# '1':'YES',
|
34 |
+
# }
|
35 |
+
|
36 |
+
# # # @st.cache_data
|
37 |
+
# # def to_excel(df):
|
38 |
+
# # # df['Target Validation'] = 'No'
|
39 |
+
# # # df['Netzero Validation'] = 'No'
|
40 |
+
# # # df['GHG Validation'] = 'No'
|
41 |
+
# # # df['Adapt-Mitig Validation'] = 'No'
|
42 |
+
# # # df['Sector'] = 'No'
|
43 |
+
# # len_df = len(df)
|
44 |
+
# # output = BytesIO()
|
45 |
+
# # writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
46 |
+
# # df.to_excel(writer, index=False, sheet_name='rawdata')
|
47 |
+
# # if 'target_hits' in st.session_state:
|
48 |
+
# # target_hits = st.session_state['target_hits']
|
49 |
+
# # if 'keep' in target_hits.columns:
|
50 |
+
|
51 |
+
# # target_hits = target_hits[target_hits.keep == True]
|
52 |
+
# # target_hits = target_hits.reset_index(drop=True)
|
53 |
+
# # target_hits.drop(columns = ['keep'], inplace=True)
|
54 |
+
# # target_hits.to_excel(writer,index=False,sheet_name = 'Target')
|
55 |
+
# # else:
|
56 |
+
|
57 |
+
# # target_hits = target_hits.sort_values(by=['Target Score'], ascending=False)
|
58 |
+
# # target_hits = target_hits.reset_index(drop=True)
|
59 |
+
# # target_hits.to_excel(writer,index=False,sheet_name = 'Target')
|
60 |
+
|
61 |
+
# # else:
|
62 |
+
# # target_hits = df[df['Target Label'] == True]
|
63 |
+
# # target_hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label',
|
64 |
+
# # 'Action Score','Policies_Plans Label','Indicator Label',
|
65 |
+
# # 'Policies_Plans Score','Conditional Score'],inplace=True)
|
66 |
+
# # target_hits = target_hits.sort_values(by=['Target Score'], ascending=False)
|
67 |
+
# # target_hits = target_hits.reset_index(drop=True)
|
68 |
+
# # target_hits.to_excel(writer,index=False,sheet_name = 'Target')
|
69 |
+
|
70 |
+
|
71 |
+
# # if 'action_hits' in st.session_state:
|
72 |
+
# # action_hits = st.session_state['action_hits']
|
73 |
+
# # if 'keep' in action_hits.columns:
|
74 |
+
# # action_hits = action_hits[action_hits.keep == True]
|
75 |
+
# # action_hits = action_hits.reset_index(drop=True)
|
76 |
+
# # action_hits.drop(columns = ['keep'], inplace=True)
|
77 |
+
# # action_hits.to_excel(writer,index=False,sheet_name = 'Action')
|
78 |
+
# # else:
|
79 |
+
# # action_hits = action_hits.sort_values(by=['Action Score'], ascending=False)
|
80 |
+
# # action_hits = action_hits.reset_index(drop=True)
|
81 |
+
# # action_hits.to_excel(writer,index=False,sheet_name = 'Action')
|
82 |
+
# # else:
|
83 |
+
# # action_hits = df[df['Action Label'] == True]
|
84 |
+
# # action_hits.drop(columns=['Target Label','Target Score','Netzero Score',
|
85 |
+
# # 'Netzero Label','GHG Label',
|
86 |
+
# # 'GHG Score','Action Label','Policies_Plans Label',
|
87 |
+
# # 'Policies_Plans Score','Conditional Score'],inplace=True)
|
88 |
+
# # action_hits = action_hits.sort_values(by=['Action Score'], ascending=False)
|
89 |
+
# # action_hits = action_hits.reset_index(drop=True)
|
90 |
+
# # action_hits.to_excel(writer,index=False,sheet_name = 'Action')
|
91 |
|
92 |
+
# # # hits = hits.drop(columns = ['Target Score','Netzero Score','GHG Score'])
|
93 |
+
# # workbook = writer.book
|
94 |
+
# # # worksheet = writer.sheets['Sheet1']
|
95 |
+
# # # worksheet.data_validation('L2:L{}'.format(len_df),
|
96 |
+
# # # {'validate': 'list',
|
97 |
+
# # # 'source': ['No', 'Yes', 'Discard']})
|
98 |
+
# # # worksheet.data_validation('M2:L{}'.format(len_df),
|
99 |
+
# # # {'validate': 'list',
|
100 |
+
# # # 'source': ['No', 'Yes', 'Discard']})
|
101 |
+
# # # worksheet.data_validation('N2:L{}'.format(len_df),
|
102 |
+
# # # {'validate': 'list',
|
103 |
+
# # # 'source': ['No', 'Yes', 'Discard']})
|
104 |
+
# # # worksheet.data_validation('O2:L{}'.format(len_df),
|
105 |
+
# # # {'validate': 'list',
|
106 |
+
# # # 'source': ['No', 'Yes', 'Discard']})
|
107 |
+
# # # worksheet.data_validation('P2:L{}'.format(len_df),
|
108 |
+
# # # {'validate': 'list',
|
109 |
+
# # # 'source': ['No', 'Yes', 'Discard']})
|
110 |
+
# # writer.save()
|
111 |
+
# # processed_data = output.getvalue()
|
112 |
+
# # return processed_data
|
113 |
+
|
114 |
+
# def app():
|
115 |
|
116 |
+
# ### Main app code ###
|
117 |
+
# with st.container():
|
118 |
+
# if 'key0' in st.session_state:
|
119 |
+
# df = st.session_state.key0
|
120 |
+
|
121 |
+
# #load Classifier
|
122 |
+
# classifier = load_targetClassifier(classifier_name=params['model_name'])
|
123 |
+
# st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
|
124 |
+
# if len(df) > 100:
|
125 |
+
# warning_msg = ": This might take sometime, please sit back and relax."
|
126 |
+
# else:
|
127 |
+
# warning_msg = ""
|
128 |
|
129 |
+
# df = target_classification(haystack_doc=df,
|
130 |
+
# threshold= params['threshold'])
|
131 |
+
# st.session_state.key1 = df
|
132 |
|
133 |
|
134 |
+
# # def target_display():
|
135 |
|
136 |
+
# # if 'key1' in st.session_state:
|
137 |
+
# # df = st.session_state.key1
|
138 |
+
# # st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
|
139 |
+
# # .format(os.path.basename(st.session_state['filename']),
|
140 |
+
# # len(df)))
|
141 |
+
# # hits = df[df['Target Label'] == 'TARGET'].reset_index(drop=True)
|
142 |
+
# # range_val = min(5,len(hits))
|
143 |
+
# # if range_val !=0:
|
144 |
|
145 |
+
# # # collecting some statistics
|
146 |
+
# # count_target = sum(hits['Target Label'] == 'TARGET')
|
147 |
+
# # count_netzero = sum(hits['Netzero Label'] == 'NETZERO TARGET')
|
148 |
+
# # count_ghg = sum(hits['GHG Label'] == 'GHG')
|
149 |
+
# # count_transport = sum([True if 'Transport' in x else False
|
150 |
+
# # for x in hits['Sector Label']])
|
151 |
+
|
152 |
+
# # c1, c2 = st.columns([1,1])
|
153 |
+
# # with c1:
|
154 |
+
# # st.write('**Target Paragraphs**: `{}`'.format(count_target))
|
155 |
+
# # st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
|
156 |
+
# # with c2:
|
157 |
+
# # st.write('**GHG Target Related Paragraphs**: `{}`'.format(count_ghg))
|
158 |
+
# # st.write('**Transport Related Paragraphs**: `{}`'.format(count_transport))
|
159 |
+
# # # st.write('-------------------')
|
160 |
+
# # hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label',
|
161 |
+
# # 'Action Score','Policies_Plans Label','Indicator Label',
|
162 |
+
# # 'Policies_Plans Score','Conditional Score'],inplace=True)
|
163 |
+
# # hits = hits.sort_values(by=['Target Score'], ascending=False)
|
164 |
+
# # hits = hits.reset_index(drop=True)
|
165 |
+
|
166 |
+
# # # netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
|
167 |
+
# # # if not netzerohit.empty:
|
168 |
+
# # # netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
|
169 |
+
# # # # st.write('-------------------')
|
170 |
+
# # # # st.markdown("###### Netzero paragraph ######")
|
171 |
+
# # # st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
|
172 |
+
# # # netzerohit.iloc[0]['text'].replace("\n", " ")))
|
173 |
+
# # # st.write("")
|
174 |
+
# # # else:
|
175 |
+
# # # st.info("🤔 No Netzero paragraph found")
|
176 |
+
|
177 |
+
# # # st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
|
178 |
+
# # st.write('-------------------')
|
179 |
+
# # st.markdown("###### Top few Target Classified paragraph/text results ######")
|
180 |
+
# # range_val = min(5,len(hits))
|
181 |
+
# # for i in range(range_val):
|
182 |
+
# # # the page number reflects the page that contains the main paragraph
|
183 |
+
# # # according to split limit, the overlapping part can be on a separate page
|
184 |
+
# # st.write('**Result {}** (Relevancy Score: {:.2f}): `page {}`, `Sector: {}`,\
|
185 |
+
# # `GHG: {}`, `Adapt-Mitig :{}`'\
|
186 |
+
# # .format(i+1,hits.iloc[i]['Relevancy'],
|
187 |
+
# # hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
|
188 |
+
# # hits.iloc[i]['GHG Label'],hits.iloc[i]['Adapt-Mitig Label']))
|
189 |
+
# # st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
|
190 |
+
# # hits = hits.reset_index(drop =True)
|
191 |
+
# st.write('----------------')
|
192 |
+
|
193 |
+
|
194 |
+
# st.caption("Filter table to select rows to keep for Target category")
|
195 |
+
# hits = filter_for_tracs(hits)
|
196 |
+
# convert_type = {'Netzero Label': 'category',
|
197 |
+
# 'Conditional Label':'category',
|
198 |
+
# 'GHG Label':'category',
|
199 |
+
# }
|
200 |
+
# hits = hits.astype(convert_type)
|
201 |
+
# filter_dataframe(hits)
|
202 |
|
203 |
+
# # filtered_df = filtered_df[filtered_df.keep == True]
|
204 |
+
# # st.write('Explore the data')
|
205 |
+
# # AgGrid(hits)
|
206 |
|
207 |
|
208 |
+
# with st.sidebar:
|
209 |
+
# st.write('-------------')
|
210 |
+
# df_xlsx = to_excel(df)
|
211 |
+
# st.download_button(label='📥 Download Result',
|
212 |
+
# data=df_xlsx ,
|
213 |
+
# file_name= os.path.splitext(os.path.basename(st.session_state['filename']))[0]+'.xlsx')
|
214 |
+
|
215 |
+
# # st.write(
|
216 |
+
# # """This app accomodates the blog [here](https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/)
|
217 |
+
# # and walks you through one example of how the Streamlit
|
218 |
+
# # Data Science Team builds add-on functions to Streamlit.
|
219 |
+
# # """
|
220 |
+
# # )
|
221 |
+
|
222 |
+
|
223 |
+
# # def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
224 |
+
# # """
|
225 |
+
# # Adds a UI on top of a dataframe to let viewers filter columns
|
226 |
+
|
227 |
+
# # Args:
|
228 |
+
# # df (pd.DataFrame): Original dataframe
|
229 |
+
|
230 |
+
# # Returns:
|
231 |
+
# # pd.DataFrame: Filtered dataframe
|
232 |
+
# # """
|
233 |
+
# # modify = st.checkbox("Add filters")
|
234 |
+
|
235 |
+
# # if not modify:
|
236 |
+
# # st.session_state['target_hits'] = df
|
237 |
+
# # return
|
238 |
+
|
239 |
+
|
240 |
+
# # # df = df.copy()
|
241 |
+
# # # st.write(len(df))
|
242 |
+
|
243 |
+
# # # Try to convert datetimes into a standard format (datetime, no timezone)
|
244 |
+
# # # for col in df.columns:
|
245 |
+
# # # if is_object_dtype(df[col]):
|
246 |
+
# # # try:
|
247 |
+
# # # df[col] = pd.to_datetime(df[col])
|
248 |
+
# # # except Exception:
|
249 |
+
# # # pass
|
250 |
+
|
251 |
+
# # # if is_datetime64_any_dtype(df[col]):
|
252 |
+
# # # df[col] = df[col].dt.tz_localize(None)
|
253 |
+
|
254 |
+
# # modification_container = st.container()
|
255 |
+
|
256 |
+
# # with modification_container:
|
257 |
+
# # cols = list(set(df.columns) -{'page','Extracted Text'})
|
258 |
+
# # cols.sort()
|
259 |
+
# # to_filter_columns = st.multiselect("Filter dataframe on", cols
|
260 |
+
# # )
|
261 |
+
# # for column in to_filter_columns:
|
262 |
+
# # left, right = st.columns((1, 20))
|
263 |
+
# # left.write("↳")
|
264 |
+
# # # Treat columns with < 10 unique values as categorical
|
265 |
+
# # if is_categorical_dtype(df[column]):
|
266 |
+
# # # st.write(type(df[column][0]), column)
|
267 |
+
# # user_cat_input = right.multiselect(
|
268 |
+
# # f"Values for {column}",
|
269 |
+
# # df[column].unique(),
|
270 |
+
# # default=list(df[column].unique()),
|
271 |
+
# # )
|
272 |
+
# # df = df[df[column].isin(user_cat_input)]
|
273 |
+
# # elif is_numeric_dtype(df[column]):
|
274 |
+
# # _min = float(df[column].min())
|
275 |
+
# # _max = float(df[column].max())
|
276 |
+
# # step = (_max - _min) / 100
|
277 |
+
# # user_num_input = right.slider(
|
278 |
+
# # f"Values for {column}",
|
279 |
+
# # _min,
|
280 |
+
# # _max,
|
281 |
+
# # (_min, _max),
|
282 |
+
# # step=step,
|
283 |
+
# # )
|
284 |
+
# # df = df[df[column].between(*user_num_input)]
|
285 |
+
# # elif is_list_like(df[column]) & (type(df[column][0]) == list) :
|
286 |
+
# # list_vals = set(x for lst in df[column].tolist() for x in lst)
|
287 |
+
# # user_multi_input = right.multiselect(
|
288 |
+
# # f"Values for {column}",
|
289 |
+
# # list_vals,
|
290 |
+
# # default=list_vals,
|
291 |
+
# # )
|
292 |
+
# # df['check'] = df[column].apply(lambda x: any(i in x for i in user_multi_input))
|
293 |
+
# # df = df[df.check == True]
|
294 |
+
# # df.drop(columns = ['check'],inplace=True)
|
295 |
|
296 |
+
# # # df[df[column].between(*user_num_input)]
|
297 |
+
# # # elif is_datetime64_any_dtype(df[column]):
|
298 |
+
# # # user_date_input = right.date_input(
|
299 |
+
# # # f"Values for {column}",
|
300 |
+
# # # value=(
|
301 |
+
# # # df[column].min(),
|
302 |
+
# # # df[column].max(),
|
303 |
+
# # # ),
|
304 |
+
# # # )
|
305 |
+
# # # if len(user_date_input) == 2:
|
306 |
+
# # # user_date_input = tuple(map(pd.to_datetime, user_date_input))
|
307 |
+
# # # start_date, end_date = user_date_input
|
308 |
+
# # # df = df.loc[df[column].between(start_date, end_date)]
|
309 |
+
# # else:
|
310 |
+
# # user_text_input = right.text_input(
|
311 |
+
# # f"Substring or regex in {column}",
|
312 |
+
# # )
|
313 |
+
# # if user_text_input:
|
314 |
+
# # df = df[df[column].str.lower().str.contains(user_text_input)]
|
315 |
|
316 |
+
# # df = df.reset_index(drop=True)
|
317 |
|
318 |
+
# # st.session_state['target_hits'] = df
|
319 |
+
# # df['IKI_Netzero'] = df.apply(lambda x: 'T_NETZERO' if ((x['Netzero Label'] == 'NETZERO TARGET') &
|
320 |
+
# # (x['Conditional Label'] == 'UNCONDITIONAL'))
|
321 |
+
# # else 'T_NETZERO_C' if ((x['Netzero Label'] == 'NETZERO TARGET') &
|
322 |
+
# # (x['Conditional Label'] == 'CONDITIONAL')
|
323 |
+
# # )
|
324 |
+
# # else None, axis=1
|
325 |
+
# # )
|
326 |
+
# # def check_t(s,c):
|
327 |
+
# # temp = []
|
328 |
+
# # if (('Transport' in s) & (c== 'UNCONDITIONAL')):
|
329 |
+
# # temp.append('T_Transport_Unc')
|
330 |
+
# # if (('Transport' in s) & (c == 'CONDITIONAL')):
|
331 |
+
# # temp.append('T_Transport_C')
|
332 |
+
# # if (('Economy-wide' in s) & (c == 'CONDITIONAL')):
|
333 |
+
# # temp.append('T_Economy_C')
|
334 |
+
# # if (('Economy-wide' in s) & (c == 'UNCONDITIONAL')):
|
335 |
+
# # temp.append('T_Economy_Unc')
|
336 |
+
# # if (('Energy' in s) & (c == 'CONDITIONAL')):
|
337 |
+
# # temp.append('T_Energy_C')
|
338 |
+
# # if (('Energy' in s) & (c == 'UNCONDITIONAL')):
|
339 |
+
# # temp.append('T_Economy_Unc')
|
340 |
+
# # return temp
|
341 |
+
# # df['IKI_Target'] = df.apply(lambda x:check_t(x['Sector Label'], x['Conditional Label']),
|
342 |
+
# # axis=1 )
|
343 |
+
|
344 |
+
# # # target_hits = st.session_state['target_hits']
|
345 |
+
# # df['keep'] = True
|
346 |
+
|
347 |
+
|
348 |
+
# # df = df[['text','IKI_Netzero','IKI_Target','Target Score','Netzero Label','GHG Label',
|
349 |
+
# # 'Conditional Label','Sector Label','Adapt-Mitig Label','page','keep']]
|
350 |
+
# # st.dataframe(df)
|
351 |
+
# # # df = st.data_editor(
|
352 |
+
# # # df,
|
353 |
+
# # # column_config={
|
354 |
+
# # # "keep": st.column_config.CheckboxColumn(
|
355 |
+
# # # help="Select which rows to keep",
|
356 |
+
# # # default=False,
|
357 |
+
# # # )
|
358 |
+
# # # },
|
359 |
+
# # # disabled=list(set(df.columns) - {'keep'}),
|
360 |
+
# # # hide_index=True,
|
361 |
+
# # # )
|
362 |
+
# # # st.write("updating target hits....")
|
363 |
+
# # # st.write(len(df[df.keep == True]))
|
364 |
+
# # st.session_state['target_hits'] = df
|
365 |
|
366 |
+
# # return
|
367 |
|
368 |
|