tokenid commited on
Commit
00059bc
β€’
1 Parent(s): ac99742

disable video rendering

Browse files
Files changed (2) hide show
  1. app.py +40 -46
  2. src/models/lrm_mesh.py +5 -2
app.py CHANGED
@@ -127,6 +127,9 @@ state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_gene
127
  model.load_state_dict(state_dict, strict=True)
128
 
129
  model = model.to(device)
 
 
 
130
 
131
  print('Loading Finished!')
132
 
@@ -199,11 +202,6 @@ def make3d(input_image, sample_steps, sample_seed):
199
  else:
200
  print("CUDA installation not found")
201
 
202
- global model
203
- if IS_FLEXICUBES:
204
- model.init_flexicubes_geometry(device)
205
- model = model.eval()
206
-
207
  images, show_images = generate_mvs(input_image, sample_steps, sample_seed)
208
 
209
  images = np.asarray(images, dtype=np.float32) / 255.0
@@ -226,46 +224,42 @@ def make3d(input_image, sample_steps, sample_seed):
226
  # get triplane
227
  planes = model.forward_planes(images, input_cameras)
228
 
229
- # get video
230
- chunk_size = 20 if IS_FLEXICUBES else 1
231
- render_size = 384
232
 
233
- frames = []
234
- for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
235
- if IS_FLEXICUBES:
236
- frame = model.forward_geometry(
237
- planes,
238
- render_cameras[:, i:i+chunk_size],
239
- render_size=render_size,
240
- )['img']
241
- else:
242
- frame = model.synthesizer(
243
- planes,
244
- cameras=render_cameras[:, i:i+chunk_size],
245
- render_size=render_size,
246
- )['images_rgb']
247
- frames.append(frame)
248
- frames = torch.cat(frames, dim=1)
249
-
250
- images_to_video(
251
- frames[0],
252
- video_fpath,
253
- fps=30,
254
- )
255
-
256
- print(f"Video saved to {video_fpath}")
257
 
258
  mesh_fpath = make_mesh(mesh_fpath, planes)
259
 
260
- return video_fpath, mesh_fpath, show_images
261
 
262
 
263
  _HEADER_ = '''
264
- <h2><b>Official πŸ€— Gradio demo for</b>
265
- <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>
266
- <b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b>
267
- </a>.
268
- </h2>
269
  '''
270
 
271
  _LINKS_ = '''
@@ -348,13 +342,13 @@ with gr.Blocks() as demo:
348
  interactive=False
349
  )
350
 
351
- with gr.Column():
352
- output_video = gr.Video(
353
- label="video", format="mp4",
354
- width=379,
355
- autoplay=True,
356
- interactive=False
357
- )
358
 
359
  with gr.Row():
360
  output_model_obj = gr.Model3D(
@@ -371,7 +365,7 @@ with gr.Blocks() as demo:
371
  ).success(
372
  fn=make3d,
373
  inputs=[processed_image, sample_steps, sample_seed],
374
- outputs=[output_video, output_model_obj, mv_show_images]
375
  )
376
 
377
  demo.launch()
 
127
  model.load_state_dict(state_dict, strict=True)
128
 
129
  model = model.to(device)
130
+ if IS_FLEXICUBES:
131
+ model.init_flexicubes_geometry(device, use_renderer=False)
132
+ model = model.eval()
133
 
134
  print('Loading Finished!')
135
 
 
202
  else:
203
  print("CUDA installation not found")
204
 
 
 
 
 
 
205
  images, show_images = generate_mvs(input_image, sample_steps, sample_seed)
206
 
207
  images = np.asarray(images, dtype=np.float32) / 255.0
 
224
  # get triplane
225
  planes = model.forward_planes(images, input_cameras)
226
 
227
+ # # get video
228
+ # chunk_size = 20 if IS_FLEXICUBES else 1
229
+ # render_size = 384
230
 
231
+ # frames = []
232
+ # for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
233
+ # if IS_FLEXICUBES:
234
+ # frame = model.forward_geometry(
235
+ # planes,
236
+ # render_cameras[:, i:i+chunk_size],
237
+ # render_size=render_size,
238
+ # )['img']
239
+ # else:
240
+ # frame = model.synthesizer(
241
+ # planes,
242
+ # cameras=render_cameras[:, i:i+chunk_size],
243
+ # render_size=render_size,
244
+ # )['images_rgb']
245
+ # frames.append(frame)
246
+ # frames = torch.cat(frames, dim=1)
247
+
248
+ # images_to_video(
249
+ # frames[0],
250
+ # video_fpath,
251
+ # fps=30,
252
+ # )
253
+
254
+ # print(f"Video saved to {video_fpath}")
255
 
256
  mesh_fpath = make_mesh(mesh_fpath, planes)
257
 
258
+ return mesh_fpath, show_images
259
 
260
 
261
  _HEADER_ = '''
262
+ <h2><b>Official πŸ€— Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2>
 
 
 
 
263
  '''
264
 
265
  _LINKS_ = '''
 
342
  interactive=False
343
  )
344
 
345
+ # with gr.Column():
346
+ # output_video = gr.Video(
347
+ # label="video", format="mp4",
348
+ # width=379,
349
+ # autoplay=True,
350
+ # interactive=False
351
+ # )
352
 
353
  with gr.Row():
354
  output_model_obj = gr.Model3D(
 
365
  ).success(
366
  fn=make3d,
367
  inputs=[processed_image, sample_steps, sample_seed],
368
+ outputs=[output_model_obj, mv_show_images]
369
  )
370
 
371
  demo.launch()
src/models/lrm_mesh.py CHANGED
@@ -74,9 +74,12 @@ class InstantMesh(nn.Module):
74
  samples_per_ray=rendering_samples_per_ray,
75
  )
76
 
77
- def init_flexicubes_geometry(self, device, fovy=50.0):
78
  camera = PerspectiveCamera(fovy=fovy, device=device)
79
- renderer = NeuralRender(device, camera_model=camera)
 
 
 
80
  self.geometry = FlexiCubesGeometry(
81
  grid_res=self.grid_res,
82
  scale=self.grid_scale,
 
74
  samples_per_ray=rendering_samples_per_ray,
75
  )
76
 
77
+ def init_flexicubes_geometry(self, device, fovy=50.0, use_renderer=True):
78
  camera = PerspectiveCamera(fovy=fovy, device=device)
79
+ if use_renderer:
80
+ renderer = NeuralRender(device, camera_model=camera)
81
+ else:
82
+ renderer = None
83
  self.geometry = FlexiCubesGeometry(
84
  grid_res=self.grid_res,
85
  scale=self.grid_scale,