Spaces:
Runtime error
Runtime error
wybertwang
commited on
Commit
•
c426a27
1
Parent(s):
3cb3d90
Upload 78 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- DejaVuSansCondensed-Bold.ttf +0 -0
- Image/demo1.svg +0 -0
- Image/demo2.svg +0 -0
- Image/title.svg +1 -0
- LICENSE +28 -0
- app_old.py +261 -0
- caas.py +114 -0
- captioner/README.md +13 -0
- captioner/__init__.py +15 -0
- captioner/base_captioner.py +199 -0
- captioner/blip.py +66 -0
- captioner/blip2.py +55 -0
- captioner/git.py +57 -0
- captioner/modeling_blip.py +1476 -0
- captioner/modeling_git.py +1587 -0
- captioner/vit_pixel_masks_utils.py +17 -0
- image_editing_utils.py +68 -0
- segmenter/__init__.py +6 -0
- segmenter/base_segmenter.py +153 -0
- segmenter/images/truck.jpg +0 -0
- segmenter/readme.md +68 -0
- test_img/img1.jpg +0 -0
- test_img/img1.jpg.raw_mask.png +0 -0
- test_img/img10.jpg +0 -0
- test_img/img10.jpg.raw_mask.png +0 -0
- test_img/img11.jpg +0 -0
- test_img/img12.jpg +0 -0
- test_img/img12.jpg.raw_mask.png +0 -0
- test_img/img13.jpg +0 -0
- test_img/img13.jpg.raw_mask.png +0 -0
- test_img/img14.jpg +0 -0
- test_img/img14.jpg.raw_mask.png +0 -0
- test_img/img15.jpg +0 -0
- test_img/img15.jpg.raw_mask.png +0 -0
- test_img/img16.jpg +0 -0
- test_img/img16.jpg.raw_mask.png +0 -0
- test_img/img17.jpg +0 -0
- test_img/img18.jpg +3 -0
- test_img/img19.jpg +0 -0
- test_img/img2.jpg +0 -0
- test_img/img2.jpg.raw_mask.png +0 -0
- test_img/img20.jpg +0 -0
- test_img/img21.jpg +0 -0
- test_img/img22.jpg +3 -0
- test_img/img23.jpg +0 -0
- test_img/img24.jpg +0 -0
- test_img/img25.jpg +0 -0
- test_img/img27.jpg +0 -0
- test_img/img28.jpg +0 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
test_img/img18.jpg filter=lfs diff=lfs merge=lfs -text
|
36 |
+
test_img/img22.jpg filter=lfs diff=lfs merge=lfs -text
|
DejaVuSansCondensed-Bold.ttf
ADDED
Binary file (632 kB). View file
|
|
Image/demo1.svg
ADDED
Image/demo2.svg
ADDED
Image/title.svg
ADDED
LICENSE
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BSD 3-Clause License
|
2 |
+
|
3 |
+
Copyright (c) 2023, Teng Wang
|
4 |
+
|
5 |
+
Redistribution and use in source and binary forms, with or without
|
6 |
+
modification, are permitted provided that the following conditions are met:
|
7 |
+
|
8 |
+
1. Redistributions of source code must retain the above copyright notice, this
|
9 |
+
list of conditions and the following disclaimer.
|
10 |
+
|
11 |
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
12 |
+
this list of conditions and the following disclaimer in the documentation
|
13 |
+
and/or other materials provided with the distribution.
|
14 |
+
|
15 |
+
3. Neither the name of the copyright holder nor the names of its
|
16 |
+
contributors may be used to endorse or promote products derived from
|
17 |
+
this software without specific prior written permission.
|
18 |
+
|
19 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
22 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
23 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
24 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
25 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
26 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
27 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
28 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
app_old.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
import string
|
3 |
+
import gradio as gr
|
4 |
+
import requests
|
5 |
+
from caas import CaptionAnything
|
6 |
+
import torch
|
7 |
+
import json
|
8 |
+
import sys
|
9 |
+
import argparse
|
10 |
+
from caas import parse_augment
|
11 |
+
import os
|
12 |
+
|
13 |
+
# download sam checkpoint if not downloaded
|
14 |
+
def download_checkpoint(url, folder, filename):
|
15 |
+
os.makedirs(folder, exist_ok=True)
|
16 |
+
filepath = os.path.join(folder, filename)
|
17 |
+
|
18 |
+
if not os.path.exists(filepath):
|
19 |
+
response = requests.get(url, stream=True)
|
20 |
+
with open(filepath, "wb") as f:
|
21 |
+
for chunk in response.iter_content(chunk_size=8192):
|
22 |
+
if chunk:
|
23 |
+
f.write(chunk)
|
24 |
+
|
25 |
+
return filepath
|
26 |
+
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
|
27 |
+
folder = "segmenter"
|
28 |
+
filename = "sam_vit_h_4b8939.pth"
|
29 |
+
|
30 |
+
title = """<h1 align="center">Caption-Anything</h1>"""
|
31 |
+
description = """Gradio demo for Caption Anything, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them.
|
32 |
+
<br> <strong>Code</strong>: GitHub repo: <a href='https://github.com/ttengwang/Caption-Anything' target='_blank'></a>
|
33 |
+
"""
|
34 |
+
|
35 |
+
examples = [
|
36 |
+
["test_img/img2.jpg", "[[1000, 700, 1]]"]
|
37 |
+
]
|
38 |
+
|
39 |
+
args = parse_augment()
|
40 |
+
|
41 |
+
def get_prompt(chat_input, click_state):
|
42 |
+
points = click_state[0]
|
43 |
+
labels = click_state[1]
|
44 |
+
inputs = json.loads(chat_input)
|
45 |
+
for input in inputs:
|
46 |
+
points.append(input[:2])
|
47 |
+
labels.append(input[2])
|
48 |
+
|
49 |
+
prompt = {
|
50 |
+
"prompt_type":["click"],
|
51 |
+
"input_point":points,
|
52 |
+
"input_label":labels,
|
53 |
+
"multimask_output":"True",
|
54 |
+
}
|
55 |
+
return prompt
|
56 |
+
|
57 |
+
def inference_seg_cap(image_input, chat_input, language, sentiment, factuality, length, state, click_state):
|
58 |
+
controls = {'length': length,
|
59 |
+
'sentiment': sentiment,
|
60 |
+
'factuality': factuality,
|
61 |
+
'language': language}
|
62 |
+
prompt = get_prompt(chat_input, click_state)
|
63 |
+
print('prompt: ', prompt, 'controls: ', controls)
|
64 |
+
out = model.inference(image_input, prompt, controls)
|
65 |
+
state = state + [(None, "Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]))]
|
66 |
+
for k, v in out['generated_captions'].items():
|
67 |
+
state = state + [(f'{k}: {v}', None)]
|
68 |
+
click_state[2].append(out['generated_captions']['raw_caption'])
|
69 |
+
image_output_mask = out['mask_save_path']
|
70 |
+
image_output_crop = out['crop_save_path']
|
71 |
+
return state, state, click_state, image_output_mask, image_output_crop
|
72 |
+
|
73 |
+
|
74 |
+
def upload_callback(image_input, state):
|
75 |
+
state = state + [('Image size: ' + str(image_input.size), None)]
|
76 |
+
return state
|
77 |
+
|
78 |
+
# get coordinate in format [[x,y,positive/negative]]
|
79 |
+
def get_select_coords(image_input, point_prompt, language, sentiment, factuality, length, state, click_state, evt: gr.SelectData):
|
80 |
+
print("point_prompt: ", point_prompt)
|
81 |
+
if point_prompt == 'Positive Point':
|
82 |
+
coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1]))
|
83 |
+
else:
|
84 |
+
coordinate = "[[{}, {}, 0]]".format(str(evt.index[0]), str(evt.index[1]))
|
85 |
+
return (coordinate,) + inference_seg_cap(image_input, coordinate, language, sentiment, factuality, length, state, click_state)
|
86 |
+
|
87 |
+
def chat_with_points(chat_input, click_state, state):
|
88 |
+
points, labels, captions = click_state
|
89 |
+
point_chat_prompt = "I want you act as a chat bot in terms of image. I will give you some points (w, h) in the image and tell you what happed on the point in natural language. Note that (0, 0) refers to the top-left corner of the image, w refers to the width and h refers the height. You should chat with me based on the fact in the image instead of imagination. Now I tell you the points with their visual description:\n{points_with_caps}\n. Now begin chatting! Human: {chat_input}\nAI: "
|
90 |
+
# "The image is of width {width} and height {height}."
|
91 |
+
|
92 |
+
prev_visual_context = ""
|
93 |
+
pos_points = [f"{points[i][0]}, {points[i][1]}" for i in range(len(points)) if labels[i] == 1]
|
94 |
+
prev_visual_context = ', '.join(pos_points) + captions[-1] + '\n'
|
95 |
+
chat_prompt = point_chat_prompt.format(**{"points_with_caps": prev_visual_context, "chat_input": chat_input})
|
96 |
+
response = model.text_refiner.llm(chat_prompt)
|
97 |
+
state = state + [(chat_input, response)]
|
98 |
+
return state, state
|
99 |
+
|
100 |
+
def init_openai_api_key(api_key):
|
101 |
+
os.environ['OPENAI_API_KEY'] = api_key
|
102 |
+
global model
|
103 |
+
model = CaptionAnything(args)
|
104 |
+
|
105 |
+
css='''
|
106 |
+
#image_upload{min-height:200px}
|
107 |
+
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 200px}
|
108 |
+
'''
|
109 |
+
|
110 |
+
with gr.Blocks(css=css) as iface:
|
111 |
+
state = gr.State([])
|
112 |
+
click_state = gr.State([[],[],[]])
|
113 |
+
caption_state = gr.State([[]])
|
114 |
+
gr.Markdown(title)
|
115 |
+
gr.Markdown(description)
|
116 |
+
|
117 |
+
with gr.Column():
|
118 |
+
openai_api_key = gr.Textbox(
|
119 |
+
placeholder="Input your openAI API key and press Enter",
|
120 |
+
show_label=False,
|
121 |
+
lines=1,
|
122 |
+
type="password",
|
123 |
+
)
|
124 |
+
openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key])
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
with gr.Column(scale=0.7):
|
128 |
+
image_input = gr.Image(type="pil", interactive=True, label="Image", elem_id="image_upload").style(height=260,scale=1.0)
|
129 |
+
|
130 |
+
with gr.Row(scale=0.7):
|
131 |
+
point_prompt = gr.Radio(
|
132 |
+
choices=["Positive Point", "Negative Point"],
|
133 |
+
value="Positive Point",
|
134 |
+
label="Points",
|
135 |
+
interactive=True,
|
136 |
+
)
|
137 |
+
|
138 |
+
# with gr.Row():
|
139 |
+
language = gr.Radio(
|
140 |
+
choices=["English", "Chinese", "French", "Spanish", "Arabic", "Portuguese","Cantonese"],
|
141 |
+
value="English",
|
142 |
+
label="Language",
|
143 |
+
interactive=True,
|
144 |
+
)
|
145 |
+
sentiment = gr.Radio(
|
146 |
+
choices=["Positive", "Natural", "Negative"],
|
147 |
+
value="Natural",
|
148 |
+
label="Sentiment",
|
149 |
+
interactive=True,
|
150 |
+
)
|
151 |
+
factuality = gr.Radio(
|
152 |
+
choices=["Factual", "Imagination"],
|
153 |
+
value="Factual",
|
154 |
+
label="Factuality",
|
155 |
+
interactive=True,
|
156 |
+
)
|
157 |
+
length = gr.Slider(
|
158 |
+
minimum=5,
|
159 |
+
maximum=100,
|
160 |
+
value=10,
|
161 |
+
step=1,
|
162 |
+
interactive=True,
|
163 |
+
label="Length",
|
164 |
+
)
|
165 |
+
|
166 |
+
with gr.Column(scale=1.5):
|
167 |
+
with gr.Row():
|
168 |
+
image_output_mask= gr.Image(type="pil", interactive=False, label="Mask").style(height=260,scale=1.0)
|
169 |
+
image_output_crop= gr.Image(type="pil", interactive=False, label="Cropped Image by Mask", show_progress=False).style(height=260,scale=1.0)
|
170 |
+
chatbot = gr.Chatbot(label="Chat Output",).style(height=450,scale=0.5)
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
with gr.Column(scale=0.7):
|
174 |
+
prompt_input = gr.Textbox(lines=1, label="Input Prompt (A list of points like : [[100, 200, 1], [200,300,0]])")
|
175 |
+
prompt_input.submit(
|
176 |
+
inference_seg_cap,
|
177 |
+
[
|
178 |
+
image_input,
|
179 |
+
prompt_input,
|
180 |
+
language,
|
181 |
+
sentiment,
|
182 |
+
factuality,
|
183 |
+
length,
|
184 |
+
state,
|
185 |
+
click_state
|
186 |
+
],
|
187 |
+
[chatbot, state, click_state, image_output_mask, image_output_crop],
|
188 |
+
show_progress=False
|
189 |
+
)
|
190 |
+
|
191 |
+
image_input.upload(
|
192 |
+
upload_callback,
|
193 |
+
[image_input, state],
|
194 |
+
[chatbot]
|
195 |
+
)
|
196 |
+
|
197 |
+
with gr.Row():
|
198 |
+
clear_button = gr.Button(value="Clear Click", interactive=True)
|
199 |
+
clear_button.click(
|
200 |
+
lambda: ("", [[], [], []], None, None),
|
201 |
+
[],
|
202 |
+
[prompt_input, click_state, image_output_mask, image_output_crop],
|
203 |
+
queue=False,
|
204 |
+
show_progress=False
|
205 |
+
)
|
206 |
+
|
207 |
+
clear_button = gr.Button(value="Clear", interactive=True)
|
208 |
+
clear_button.click(
|
209 |
+
lambda: ("", [], [], [[], [], []], None, None),
|
210 |
+
[],
|
211 |
+
[prompt_input, chatbot, state, click_state, image_output_mask, image_output_crop],
|
212 |
+
queue=False,
|
213 |
+
show_progress=False
|
214 |
+
)
|
215 |
+
|
216 |
+
submit_button = gr.Button(
|
217 |
+
value="Submit", interactive=True, variant="primary"
|
218 |
+
)
|
219 |
+
submit_button.click(
|
220 |
+
inference_seg_cap,
|
221 |
+
[
|
222 |
+
image_input,
|
223 |
+
prompt_input,
|
224 |
+
language,
|
225 |
+
sentiment,
|
226 |
+
factuality,
|
227 |
+
length,
|
228 |
+
state,
|
229 |
+
click_state
|
230 |
+
],
|
231 |
+
[chatbot, state, click_state, image_output_mask, image_output_crop],
|
232 |
+
show_progress=False
|
233 |
+
)
|
234 |
+
|
235 |
+
# select coordinate
|
236 |
+
image_input.select(
|
237 |
+
get_select_coords,
|
238 |
+
inputs=[image_input,point_prompt,language,sentiment,factuality,length,state,click_state],
|
239 |
+
outputs=[prompt_input, chatbot, state, click_state, image_output_mask, image_output_crop],
|
240 |
+
show_progress=False
|
241 |
+
)
|
242 |
+
|
243 |
+
image_input.change(
|
244 |
+
lambda: ("", [], [[], [], []]),
|
245 |
+
[],
|
246 |
+
[chatbot, state, click_state],
|
247 |
+
queue=False,
|
248 |
+
)
|
249 |
+
|
250 |
+
with gr.Column(scale=1.5):
|
251 |
+
chat_input = gr.Textbox(lines=1, label="Chat Input")
|
252 |
+
chat_input.submit(chat_with_points, [chat_input, click_state, state], [chatbot, state])
|
253 |
+
|
254 |
+
|
255 |
+
examples = gr.Examples(
|
256 |
+
examples=examples,
|
257 |
+
inputs=[image_input, prompt_input],
|
258 |
+
)
|
259 |
+
|
260 |
+
iface.queue(concurrency_count=1, api_open=False, max_size=10)
|
261 |
+
iface.launch(server_name="0.0.0.0", enable_queue=True, server_port=args.port, share=args.gradio_share)
|
caas.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from captioner import build_captioner, BaseCaptioner
|
2 |
+
from segmenter import build_segmenter
|
3 |
+
from text_refiner import build_text_refiner
|
4 |
+
import os
|
5 |
+
import argparse
|
6 |
+
import pdb
|
7 |
+
import time
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
class CaptionAnything():
|
11 |
+
def __init__(self, args):
|
12 |
+
self.args = args
|
13 |
+
self.captioner = build_captioner(args.captioner, args.device, args)
|
14 |
+
self.segmenter = build_segmenter(args.segmenter, args.device, args)
|
15 |
+
if not args.disable_gpt:
|
16 |
+
self.init_refiner()
|
17 |
+
|
18 |
+
|
19 |
+
def init_refiner(self):
|
20 |
+
if os.environ.get('OPENAI_API_KEY', None):
|
21 |
+
self.text_refiner = build_text_refiner(self.args.text_refiner, self.args.device, self.args)
|
22 |
+
|
23 |
+
def inference(self, image, prompt, controls, disable_gpt=False):
|
24 |
+
# segment with prompt
|
25 |
+
print("CA prompt: ", prompt, "CA controls",controls)
|
26 |
+
seg_mask = self.segmenter.inference(image, prompt)[0, ...]
|
27 |
+
mask_save_path = f'result/mask_{time.time()}.png'
|
28 |
+
if not os.path.exists(os.path.dirname(mask_save_path)):
|
29 |
+
os.makedirs(os.path.dirname(mask_save_path))
|
30 |
+
new_p = Image.fromarray(seg_mask.astype('int') * 255.)
|
31 |
+
if new_p.mode != 'RGB':
|
32 |
+
new_p = new_p.convert('RGB')
|
33 |
+
new_p.save(mask_save_path)
|
34 |
+
print('seg_mask path: ', mask_save_path)
|
35 |
+
print("seg_mask.shape: ", seg_mask.shape)
|
36 |
+
# captioning with mask
|
37 |
+
if self.args.enable_reduce_tokens:
|
38 |
+
caption, crop_save_path = self.captioner.inference_with_reduced_tokens(image, seg_mask, crop_mode=self.args.seg_crop_mode, filter=self.args.clip_filter, regular_box = self.args.regular_box)
|
39 |
+
else:
|
40 |
+
caption, crop_save_path = self.captioner.inference_seg(image, seg_mask, crop_mode=self.args.seg_crop_mode, filter=self.args.clip_filter, regular_box = self.args.regular_box)
|
41 |
+
# refining with TextRefiner
|
42 |
+
context_captions = []
|
43 |
+
if self.args.context_captions:
|
44 |
+
context_captions.append(self.captioner.inference(image))
|
45 |
+
if not disable_gpt and hasattr(self, "text_refiner"):
|
46 |
+
refined_caption = self.text_refiner.inference(query=caption, controls=controls, context=context_captions)
|
47 |
+
else:
|
48 |
+
refined_caption = {'raw_caption': caption}
|
49 |
+
out = {'generated_captions': refined_caption,
|
50 |
+
'crop_save_path': crop_save_path,
|
51 |
+
'mask_save_path': mask_save_path,
|
52 |
+
'context_captions': context_captions}
|
53 |
+
return out
|
54 |
+
|
55 |
+
def parse_augment():
|
56 |
+
parser = argparse.ArgumentParser()
|
57 |
+
parser.add_argument('--captioner', type=str, default="blip")
|
58 |
+
parser.add_argument('--segmenter', type=str, default="base")
|
59 |
+
parser.add_argument('--text_refiner', type=str, default="base")
|
60 |
+
parser.add_argument('--segmenter_checkpoint', type=str, default="segmenter/sam_vit_h_4b8939.pth")
|
61 |
+
parser.add_argument('--seg_crop_mode', type=str, default="w_bg", choices=['wo_bg', 'w_bg'], help="whether to add or remove background of the image when captioning")
|
62 |
+
parser.add_argument('--clip_filter', action="store_true", help="use clip to filter bad captions")
|
63 |
+
parser.add_argument('--context_captions', action="store_true", help="use surrounding captions to enhance current caption")
|
64 |
+
parser.add_argument('--regular_box', action="store_true", default = False, help="crop image with a regular box")
|
65 |
+
parser.add_argument('--device', type=str, default="cuda:0")
|
66 |
+
parser.add_argument('--port', type=int, default=6086, help="only useful when running gradio applications")
|
67 |
+
parser.add_argument('--debug', action="store_true")
|
68 |
+
parser.add_argument('--gradio_share', action="store_true")
|
69 |
+
parser.add_argument('--disable_gpt', action="store_true")
|
70 |
+
parser.add_argument('--enable_reduce_tokens', action="store_true", default=False)
|
71 |
+
parser.add_argument('--disable_reuse_features', action="store_true", default=False)
|
72 |
+
args = parser.parse_args()
|
73 |
+
|
74 |
+
if args.debug:
|
75 |
+
print(args)
|
76 |
+
return args
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
args = parse_augment()
|
80 |
+
# image_path = 'test_img/img3.jpg'
|
81 |
+
image_path = 'test_img/img13.jpg'
|
82 |
+
prompts = [
|
83 |
+
{
|
84 |
+
"prompt_type":["click"],
|
85 |
+
"input_point":[[500, 300], [1000, 500]],
|
86 |
+
"input_label":[1, 0],
|
87 |
+
"multimask_output":"True",
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"prompt_type":["click"],
|
91 |
+
"input_point":[[900, 800]],
|
92 |
+
"input_label":[1],
|
93 |
+
"multimask_output":"True",
|
94 |
+
}
|
95 |
+
]
|
96 |
+
controls = {
|
97 |
+
"length": "30",
|
98 |
+
"sentiment": "positive",
|
99 |
+
# "imagination": "True",
|
100 |
+
"imagination": "False",
|
101 |
+
"language": "English",
|
102 |
+
}
|
103 |
+
|
104 |
+
model = CaptionAnything(args)
|
105 |
+
for prompt in prompts:
|
106 |
+
print('*'*30)
|
107 |
+
print('Image path: ', image_path)
|
108 |
+
image = Image.open(image_path)
|
109 |
+
print(image)
|
110 |
+
print('Visual controls (SAM prompt):\n', prompt)
|
111 |
+
print('Language controls:\n', controls)
|
112 |
+
out = model.inference(image_path, prompt, controls)
|
113 |
+
|
114 |
+
|
captioner/README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
To run BLIP/BLIP2, you should install transformers from source!
|
2 |
+
```
|
3 |
+
!pip install git+https://github.com/huggingface/transformers.git
|
4 |
+
```
|
5 |
+
To run filter module, you should install CLIP repo as a Python package as follow:
|
6 |
+
```
|
7 |
+
!pip install ftfy regex tqdm
|
8 |
+
!pip install git+https://github.com/openai/CLIP.git
|
9 |
+
```
|
10 |
+
To accelerate BLIP2 with int8, you should install accelerate
|
11 |
+
```
|
12 |
+
!pip install accelerate bitsandbytes
|
13 |
+
```
|
captioner/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .blip import BLIPCaptioner
|
2 |
+
from .blip2 import BLIP2Captioner
|
3 |
+
from .git import GITCaptioner
|
4 |
+
from .base_captioner import BaseCaptioner
|
5 |
+
|
6 |
+
|
7 |
+
def build_captioner(type, device, args=None):
|
8 |
+
if type == 'blip':
|
9 |
+
return BLIPCaptioner(device, enable_filter=args.clip_filter)
|
10 |
+
elif type == 'blip2':
|
11 |
+
return BLIP2Captioner(device, enable_filter=args.clip_filter)
|
12 |
+
elif type == 'git':
|
13 |
+
return GITCaptioner(device, enable_filter=args.clip_filter)
|
14 |
+
else:
|
15 |
+
raise NotImplementedError("")
|
captioner/base_captioner.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image, ImageDraw, ImageOps
|
3 |
+
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
4 |
+
import json
|
5 |
+
import pdb
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
from typing import Union
|
9 |
+
import time
|
10 |
+
import clip
|
11 |
+
|
12 |
+
def boundary(inputs):
|
13 |
+
|
14 |
+
col = inputs.shape[1]
|
15 |
+
inputs = inputs.reshape(-1)
|
16 |
+
lens = len(inputs)
|
17 |
+
|
18 |
+
for i in range(lens):
|
19 |
+
if inputs[i] != False:
|
20 |
+
break
|
21 |
+
for j in range(lens):
|
22 |
+
if inputs[lens - 1 - j] != False:
|
23 |
+
break
|
24 |
+
start = i
|
25 |
+
end = lens - 1 - j
|
26 |
+
top = start // col
|
27 |
+
bottom = end // col
|
28 |
+
|
29 |
+
return top, bottom
|
30 |
+
|
31 |
+
def new_seg_to_box(seg_mask: Union[np.ndarray, Image.Image, str]):
|
32 |
+
|
33 |
+
if type(seg_mask) == str:
|
34 |
+
seg_mask = Image.open(seg_mask)
|
35 |
+
elif type(seg_mask) == np.ndarray:
|
36 |
+
seg_mask = Image.fromarray(seg_mask)
|
37 |
+
seg_mask = np.array(seg_mask) > 0
|
38 |
+
size = max(seg_mask.shape[0], seg_mask.shape[1])
|
39 |
+
top, bottom = boundary(seg_mask)
|
40 |
+
left, right = boundary(seg_mask.T)
|
41 |
+
return [left / size, top / size, right / size, bottom / size]
|
42 |
+
|
43 |
+
def seg_to_box(seg_mask: Union[np.ndarray, Image.Image, str]):
|
44 |
+
if type(seg_mask) == str:
|
45 |
+
seg_mask = cv2.imread(seg_mask, cv2.IMREAD_GRAYSCALE)
|
46 |
+
_, seg_mask = cv2.threshold(seg_mask, 127, 255, 0)
|
47 |
+
elif type(seg_mask) == np.ndarray:
|
48 |
+
assert seg_mask.ndim == 2 # only support single-channel segmentation mask
|
49 |
+
seg_mask = seg_mask.astype('uint8')
|
50 |
+
if seg_mask.dtype == 'bool':
|
51 |
+
seg_mask = seg_mask * 255
|
52 |
+
contours, hierarchy = cv2.findContours(seg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
53 |
+
contours = np.concatenate(contours, axis=0)
|
54 |
+
rect = cv2.minAreaRect(contours)
|
55 |
+
box = cv2.boxPoints(rect)
|
56 |
+
if rect[-1] >= 45:
|
57 |
+
newstart = box.argmin(axis=0)[1] # leftmost
|
58 |
+
else:
|
59 |
+
newstart = box.argmax(axis=0)[0] # topmost
|
60 |
+
box = np.concatenate([box[newstart:], box[:newstart]], axis=0)
|
61 |
+
box = np.int0(box)
|
62 |
+
return box
|
63 |
+
|
64 |
+
def get_w_h(rect_points):
|
65 |
+
w = np.linalg.norm(rect_points[0] - rect_points[1], ord=2).astype('int')
|
66 |
+
h = np.linalg.norm(rect_points[0] - rect_points[3], ord=2).astype('int')
|
67 |
+
return w, h
|
68 |
+
|
69 |
+
def cut_box(img, rect_points):
|
70 |
+
w, h = get_w_h(rect_points)
|
71 |
+
dst_pts = np.array([[h, 0], [h, w], [0, w], [0, 0],], dtype="float32")
|
72 |
+
transform = cv2.getPerspectiveTransform(rect_points.astype("float32"), dst_pts)
|
73 |
+
cropped_img = cv2.warpPerspective(img, transform, (h, w))
|
74 |
+
return cropped_img
|
75 |
+
|
76 |
+
class BaseCaptioner:
|
77 |
+
def __init__(self, device, enable_filter=False):
|
78 |
+
print(f"Initializing ImageCaptioning to {device}")
|
79 |
+
self.device = device
|
80 |
+
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
81 |
+
self.processor = None
|
82 |
+
self.model = None
|
83 |
+
self.enable_filter = enable_filter
|
84 |
+
if enable_filter:
|
85 |
+
self.filter, self.preprocess = clip.load('ViT-B/32', device)
|
86 |
+
self.threshold = 0.2
|
87 |
+
|
88 |
+
@torch.no_grad()
|
89 |
+
def filter_caption(self, image: Union[np.ndarray, Image.Image, str], caption: str):
|
90 |
+
|
91 |
+
if type(image) == str: # input path
|
92 |
+
image = Image.open(image)
|
93 |
+
elif type(image) == np.ndarray:
|
94 |
+
image = Image.fromarray(image)
|
95 |
+
|
96 |
+
image = self.preprocess(image).unsqueeze(0).to(self.device) # (1, 3, 224, 224)
|
97 |
+
text = clip.tokenize(caption).to(self.device) # (1, 77)
|
98 |
+
image_features = self.filter.encode_image(image) # (1, 512)
|
99 |
+
text_features = self.filter.encode_text(text) # (1, 512)
|
100 |
+
image_features /= image_features.norm(dim = -1, keepdim = True)
|
101 |
+
text_features /= text_features.norm(dim = -1, keepdim = True)
|
102 |
+
similarity = torch.matmul(image_features, text_features.transpose(1, 0)).item()
|
103 |
+
if similarity < self.threshold:
|
104 |
+
print('There seems to be nothing where you clicked.')
|
105 |
+
out = ""
|
106 |
+
else:
|
107 |
+
out = caption
|
108 |
+
print(f'Clip score of the caption is {similarity}')
|
109 |
+
return out
|
110 |
+
|
111 |
+
|
112 |
+
def inference(self, image: Union[np.ndarray, Image.Image, str], filter: bool=False):
|
113 |
+
raise NotImplementedError()
|
114 |
+
|
115 |
+
def inference_with_reduced_tokens(self, image: Union[np.ndarray, Image.Image, str], seg_mask, filter: bool=False):
|
116 |
+
raise NotImplementedError()
|
117 |
+
|
118 |
+
def inference_box(self, image: Union[np.ndarray, Image.Image, str], box: Union[list, np.ndarray], filter=False):
|
119 |
+
if type(image) == str: # input path
|
120 |
+
image = Image.open(image)
|
121 |
+
elif type(image) == np.ndarray:
|
122 |
+
image = Image.fromarray(image)
|
123 |
+
|
124 |
+
if np.array(box).size == 4: # [x0, y0, x1, y1], where (x0, y0), (x1, y1) represent top-left and bottom-right corners
|
125 |
+
size = max(image.width, image.height)
|
126 |
+
x1, y1, x2, y2 = box
|
127 |
+
image_crop = np.array(image.crop((x1 * size, y1 * size, x2 * size, y2 * size)))
|
128 |
+
elif np.array(box).size == 8: # four corners of an irregular rectangle
|
129 |
+
image_crop = cut_box(np.array(image), box)
|
130 |
+
|
131 |
+
crop_save_path = f'result/crop_{time.time()}.png'
|
132 |
+
Image.fromarray(image_crop).save(crop_save_path)
|
133 |
+
print(f'croped image saved in {crop_save_path}')
|
134 |
+
caption = self.inference(image_crop, filter)
|
135 |
+
return caption, crop_save_path
|
136 |
+
|
137 |
+
|
138 |
+
def inference_seg(self, image: Union[np.ndarray, str], seg_mask: Union[np.ndarray, Image.Image, str], crop_mode="w_bg", filter=False, regular_box = False):
|
139 |
+
if type(image) == str:
|
140 |
+
image = Image.open(image)
|
141 |
+
if type(seg_mask) == str:
|
142 |
+
seg_mask = Image.open(seg_mask)
|
143 |
+
elif type(seg_mask) == np.ndarray:
|
144 |
+
seg_mask = Image.fromarray(seg_mask)
|
145 |
+
seg_mask = seg_mask.resize(image.size)
|
146 |
+
seg_mask = np.array(seg_mask) > 0
|
147 |
+
|
148 |
+
if crop_mode=="wo_bg":
|
149 |
+
image = np.array(image) * seg_mask[:,:,np.newaxis]
|
150 |
+
else:
|
151 |
+
image = np.array(image)
|
152 |
+
|
153 |
+
if regular_box:
|
154 |
+
min_area_box = new_seg_to_box(seg_mask)
|
155 |
+
else:
|
156 |
+
min_area_box = seg_to_box(seg_mask)
|
157 |
+
return self.inference_box(image, min_area_box, filter)
|
158 |
+
|
159 |
+
|
160 |
+
def generate_seg_cropped_image(self, image: Union[np.ndarray, str], seg_mask: Union[np.ndarray, Image.Image, str], crop_mode="w_bg", regular_box = False):
|
161 |
+
if type(image) == str:
|
162 |
+
image = Image.open(image)
|
163 |
+
if type(seg_mask) == str:
|
164 |
+
seg_mask = Image.open(seg_mask)
|
165 |
+
elif type(seg_mask) == np.ndarray:
|
166 |
+
seg_mask = Image.fromarray(seg_mask)
|
167 |
+
seg_mask = seg_mask.resize(image.size)
|
168 |
+
seg_mask = np.array(seg_mask) > 0
|
169 |
+
|
170 |
+
if crop_mode=="wo_bg":
|
171 |
+
image = np.array(image) * seg_mask[:,:,np.newaxis]
|
172 |
+
else:
|
173 |
+
image = np.array(image)
|
174 |
+
|
175 |
+
if regular_box:
|
176 |
+
box = new_seg_to_box(seg_mask)
|
177 |
+
else:
|
178 |
+
box = seg_to_box(seg_mask)
|
179 |
+
|
180 |
+
if np.array(box).size == 4: # [x0, y0, x1, y1], where (x0, y0), (x1, y1) represent top-left and bottom-right corners
|
181 |
+
size = max(image.shape[0], image.shape[1])
|
182 |
+
x1, y1, x2, y2 = box
|
183 |
+
image_crop = np.array(image.crop((x1 * size, y1 * size, x2 * size, y2 * size)))
|
184 |
+
elif np.array(box).size == 8: # four corners of an irregular rectangle
|
185 |
+
image_crop = cut_box(np.array(image), box)
|
186 |
+
crop_save_path = f'result/crop_{time.time()}.png'
|
187 |
+
Image.fromarray(image_crop).save(crop_save_path)
|
188 |
+
print(f'croped image saved in {crop_save_path}')
|
189 |
+
return crop_save_path
|
190 |
+
|
191 |
+
|
192 |
+
if __name__ == '__main__':
|
193 |
+
model = BaseCaptioner(device='cuda:0')
|
194 |
+
image_path = 'test_img/img2.jpg'
|
195 |
+
seg_mask = np.zeros((15,15))
|
196 |
+
seg_mask[5:10, 5:10] = 1
|
197 |
+
seg_mask = 'image/SAM/img10.jpg.raw_mask.png'
|
198 |
+
print(model.inference_seg(image_path, seg_mask))
|
199 |
+
|
captioner/blip.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image, ImageDraw, ImageOps
|
3 |
+
from transformers import BlipProcessor
|
4 |
+
from .modeling_blip import BlipForConditionalGeneration
|
5 |
+
import json
|
6 |
+
import pdb
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
from typing import Union
|
10 |
+
from .base_captioner import BaseCaptioner
|
11 |
+
import torchvision.transforms.functional as F
|
12 |
+
|
13 |
+
|
14 |
+
class BLIPCaptioner(BaseCaptioner):
|
15 |
+
def __init__(self, device, enable_filter=False):
|
16 |
+
super().__init__(device, enable_filter)
|
17 |
+
self.device = device
|
18 |
+
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
19 |
+
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
20 |
+
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=self.torch_dtype).to(self.device)
|
21 |
+
|
22 |
+
@torch.no_grad()
|
23 |
+
def inference(self, image: Union[np.ndarray, Image.Image, str], filter=False):
|
24 |
+
if type(image) == str: # input path
|
25 |
+
image = Image.open(image)
|
26 |
+
inputs = self.processor(image, return_tensors="pt").to(self.device, self.torch_dtype)
|
27 |
+
out = self.model.generate(**inputs, max_new_tokens=50)
|
28 |
+
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
29 |
+
if self.enable_filter and filter:
|
30 |
+
captions = self.filter_caption(image, captions)
|
31 |
+
print(f"\nProcessed ImageCaptioning by BLIPCaptioner, Output Text: {captions}")
|
32 |
+
return captions
|
33 |
+
|
34 |
+
@torch.no_grad()
|
35 |
+
def inference_with_reduced_tokens(self, image: Union[np.ndarray, Image.Image, str], seg_mask, crop_mode="w_bg", filter=False, regular_box = False):
|
36 |
+
crop_save_path = self.generate_seg_cropped_image(image=image, seg_mask=seg_mask, crop_mode=crop_mode, regular_box=regular_box)
|
37 |
+
if type(image) == str: # input path
|
38 |
+
image = Image.open(image)
|
39 |
+
inputs = self.processor(image, return_tensors="pt")
|
40 |
+
pixel_values = inputs.pixel_values.to(self.device, self.torch_dtype)
|
41 |
+
_, _, H, W = pixel_values.shape
|
42 |
+
seg_mask = Image.fromarray(seg_mask.astype(float))
|
43 |
+
seg_mask = seg_mask.resize((H, W))
|
44 |
+
seg_mask = F.pil_to_tensor(seg_mask) > 0.5
|
45 |
+
seg_mask = seg_mask.float()
|
46 |
+
pixel_masks = seg_mask.unsqueeze(0).to(self.device)
|
47 |
+
out = self.model.generate(pixel_values=pixel_values, pixel_masks=pixel_masks, max_new_tokens=50)
|
48 |
+
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
49 |
+
if self.enable_filter and filter:
|
50 |
+
captions = self.filter_caption(image, captions)
|
51 |
+
print(f"\nProcessed ImageCaptioning by BLIPCaptioner, Output Text: {captions}")
|
52 |
+
return captions, crop_save_path
|
53 |
+
|
54 |
+
|
55 |
+
if __name__ == '__main__':
|
56 |
+
model = BLIPCaptioner(device='cuda:0')
|
57 |
+
# image_path = 'test_img/img2.jpg'
|
58 |
+
image_path = '/group/30042/wybertwang/project/woa_visgpt/chatARC/image/SAM/img10.jpg'
|
59 |
+
seg_mask = np.zeros((15,15))
|
60 |
+
seg_mask[5:10, 5:10] = 1
|
61 |
+
seg_mask = 'test_img/img10.jpg.raw_mask.png'
|
62 |
+
image_path = 'test_img/img2.jpg'
|
63 |
+
seg_mask = 'test_img/img2.jpg.raw_mask.png'
|
64 |
+
print(f'process image {image_path}')
|
65 |
+
print(model.inference_with_reduced_tokens(image_path, seg_mask))
|
66 |
+
|
captioner/blip2.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image, ImageDraw, ImageOps
|
3 |
+
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
4 |
+
import json
|
5 |
+
import pdb
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
from typing import Union
|
9 |
+
from .base_captioner import BaseCaptioner
|
10 |
+
|
11 |
+
class BLIP2Captioner(BaseCaptioner):
|
12 |
+
def __init__(self, device, dialogue: bool = False, enable_filter: bool = False):
|
13 |
+
super().__init__(device, enable_filter)
|
14 |
+
self.device = device
|
15 |
+
self.dialogue = dialogue
|
16 |
+
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
17 |
+
self.processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
18 |
+
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map = 'sequential', load_in_8bit=True)
|
19 |
+
@torch.no_grad()
|
20 |
+
def inference(self, image: Union[np.ndarray, Image.Image, str], filter=False):
|
21 |
+
if type(image) == str: # input path
|
22 |
+
image = Image.open(image)
|
23 |
+
|
24 |
+
if not self.dialogue:
|
25 |
+
inputs = self.processor(image, text = 'Ignore the black background! This is a photo of ', return_tensors="pt").to(self.device, self.torch_dtype)
|
26 |
+
out = self.model.generate(**inputs, max_new_tokens=50)
|
27 |
+
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
28 |
+
if self.enable_filter and filter:
|
29 |
+
captions = self.filter_caption(image, captions)
|
30 |
+
print(f"\nProcessed ImageCaptioning by BLIP2Captioner, Output Text: {captions}")
|
31 |
+
return captions
|
32 |
+
else:
|
33 |
+
context = []
|
34 |
+
template = "Question: {} Answer: {}."
|
35 |
+
while(True):
|
36 |
+
input_texts = input()
|
37 |
+
if input_texts == 'end':
|
38 |
+
break
|
39 |
+
prompt = " ".join([template.format(context[i][0], context[i][1]) for i in range(len(context))]) + " Question: " + input_texts + " Answer:"
|
40 |
+
inputs = self.processor(image, text = prompt, return_tensors="pt").to(self.device, self.torch_dtype)
|
41 |
+
out = self.model.generate(**inputs, max_new_tokens=50)
|
42 |
+
captions = self.processor.decode(out[0], skip_special_tokens=True).strip()
|
43 |
+
context.append((input_texts, captions))
|
44 |
+
|
45 |
+
return captions
|
46 |
+
|
47 |
+
if __name__ == '__main__':
|
48 |
+
|
49 |
+
dialogue = False
|
50 |
+
model = BLIP2Captioner(device='cuda:4', dialogue = dialogue, cache_dir = '/nvme-ssd/fjj/Caption-Anything/model_cache')
|
51 |
+
image_path = 'test_img/img2.jpg'
|
52 |
+
seg_mask = np.zeros((224,224))
|
53 |
+
seg_mask[50:200, 50:200] = 1
|
54 |
+
print(f'process image {image_path}')
|
55 |
+
print(model.inference_seg(image_path, seg_mask))
|
captioner/git.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GitProcessor, AutoProcessor
|
2 |
+
from .modeling_git import GitForCausalLM
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
from .base_captioner import BaseCaptioner
|
6 |
+
import numpy as np
|
7 |
+
from typing import Union
|
8 |
+
import torchvision.transforms.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
class GITCaptioner(BaseCaptioner):
|
12 |
+
def __init__(self, device, enable_filter=False):
|
13 |
+
super().__init__(device, enable_filter)
|
14 |
+
self.device = device
|
15 |
+
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
16 |
+
self.processor = AutoProcessor.from_pretrained("microsoft/git-large")
|
17 |
+
self.model = GitForCausalLM.from_pretrained("microsoft/git-large", torch_dtype=self.torch_dtype).to(self.device)
|
18 |
+
|
19 |
+
@torch.no_grad()
|
20 |
+
def inference(self, image: Union[np.ndarray, Image.Image, str], filter=False):
|
21 |
+
if type(image) == str: # input path
|
22 |
+
image = Image.open(image)
|
23 |
+
pixel_values = self.processor(images=image, return_tensors="pt").pixel_values.to(self.device, self.torch_dtype)
|
24 |
+
generated_ids = self.model.generate(pixel_values=pixel_values, max_new_tokens=50)
|
25 |
+
generated_caption = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
26 |
+
if self.enable_filter and filter:
|
27 |
+
captions = self.filter_caption(image, captions)
|
28 |
+
print(f"\nProcessed ImageCaptioning by GITCaptioner, Output Text: {generated_caption}")
|
29 |
+
return generated_caption
|
30 |
+
|
31 |
+
@torch.no_grad()
|
32 |
+
def inference_with_reduced_tokens(self, image: Union[np.ndarray, Image.Image, str], seg_mask, crop_mode="w_bg", filter=False, regular_box = False):
|
33 |
+
crop_save_path = self.generate_seg_cropped_image(image=image, seg_mask=seg_mask, crop_mode=crop_mode, regular_box=regular_box)
|
34 |
+
if type(image) == str: # input path
|
35 |
+
image = Image.open(image)
|
36 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
37 |
+
pixel_values = inputs.pixel_values.to(self.device, self.torch_dtype)
|
38 |
+
_, _, H, W = pixel_values.shape
|
39 |
+
seg_mask = Image.fromarray(seg_mask.astype(float))
|
40 |
+
seg_mask = seg_mask.resize((H, W))
|
41 |
+
seg_mask = F.pil_to_tensor(seg_mask) > 0.5
|
42 |
+
seg_mask = seg_mask.float()
|
43 |
+
pixel_masks = seg_mask.unsqueeze(0).to(self.device)
|
44 |
+
out = self.model.generate(pixel_values=pixel_values, pixel_masks=pixel_masks, max_new_tokens=50)
|
45 |
+
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
46 |
+
if self.enable_filter and filter:
|
47 |
+
captions = self.filter_caption(image, captions)
|
48 |
+
print(f"\nProcessed ImageCaptioning by BLIPCaptioner, Output Text: {captions}")
|
49 |
+
return captions, crop_save_path
|
50 |
+
|
51 |
+
if __name__ == '__main__':
|
52 |
+
model = GITCaptioner(device='cuda:2', enable_filter=False)
|
53 |
+
image_path = 'test_img/img2.jpg'
|
54 |
+
seg_mask = np.zeros((224,224))
|
55 |
+
seg_mask[50:200, 50:200] = 1
|
56 |
+
print(f'process image {image_path}')
|
57 |
+
print(model.inference_with_reduced_tokens(image_path, seg_mask))
|
captioner/modeling_blip.py
ADDED
@@ -0,0 +1,1476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch BLIP model."""
|
16 |
+
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from typing import Any, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn.functional import normalize
|
24 |
+
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
27 |
+
from transformers.modeling_utils import PreTrainedModel
|
28 |
+
from transformers.utils import (
|
29 |
+
ModelOutput,
|
30 |
+
add_start_docstrings,
|
31 |
+
add_start_docstrings_to_model_forward,
|
32 |
+
logging,
|
33 |
+
replace_return_docstrings,
|
34 |
+
)
|
35 |
+
from transformers.models.blip.configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig
|
36 |
+
from transformers.models.blip.modeling_blip_text import BlipTextLMHeadModel, BlipTextModel
|
37 |
+
from .vit_pixel_masks_utils import ViTPatchMaskGenerator
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
_CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base"
|
42 |
+
|
43 |
+
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
44 |
+
"Salesforce/blip-vqa-base",
|
45 |
+
"Salesforce/blip-vqa-capfit-large",
|
46 |
+
"Salesforce/blip-image-captioning-base",
|
47 |
+
"Salesforce/blip-image-captioning-large",
|
48 |
+
"Salesforce/blip-itm-base-coco",
|
49 |
+
"Salesforce/blip-itm-large-coco",
|
50 |
+
"Salesforce/blip-itm-base-flikr",
|
51 |
+
"Salesforce/blip-itm-large-flikr",
|
52 |
+
# See all BLIP models at https://huggingface.co/models?filter=blip
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
# Copied from transformers.models.clip.modeling_clip.contrastive_loss
|
57 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
58 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
59 |
+
|
60 |
+
|
61 |
+
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->blip
|
62 |
+
def blip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
63 |
+
caption_loss = contrastive_loss(similarity)
|
64 |
+
image_loss = contrastive_loss(similarity.t())
|
65 |
+
return (caption_loss + image_loss) / 2.0
|
66 |
+
|
67 |
+
|
68 |
+
@dataclass
|
69 |
+
class BlipForConditionalGenerationModelOutput(ModelOutput):
|
70 |
+
"""
|
71 |
+
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
72 |
+
last hidden states. This class also adds the loss term from the text decoder.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
76 |
+
Languge modeling loss from the text decoder.
|
77 |
+
decoder_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
|
78 |
+
Prediction scores of the language modeling head of the text decoder model.
|
79 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*):
|
80 |
+
The image embeddings obtained after applying the Vision Transformer model to the input image.
|
81 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
82 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
83 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`):
|
84 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
85 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
86 |
+
|
87 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
88 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed):
|
89 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
90 |
+
sequence_length)`.
|
91 |
+
|
92 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
93 |
+
heads.
|
94 |
+
"""
|
95 |
+
|
96 |
+
loss: Optional[Tuple[torch.FloatTensor]] = None
|
97 |
+
decoder_logits: Optional[Tuple[torch.FloatTensor]] = None
|
98 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
99 |
+
last_hidden_state: torch.FloatTensor = None
|
100 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
101 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
102 |
+
|
103 |
+
|
104 |
+
@dataclass
|
105 |
+
class BlipTextVisionModelOutput(ModelOutput):
|
106 |
+
"""
|
107 |
+
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
108 |
+
last hidden states. This class also adds the loss term from the text decoder.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
112 |
+
Languge modeling loss from the text decoder.
|
113 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
114 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
115 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
116 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
117 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
118 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
119 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
120 |
+
|
121 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
122 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
123 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
124 |
+
sequence_length)`.
|
125 |
+
|
126 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
127 |
+
heads.
|
128 |
+
"""
|
129 |
+
|
130 |
+
loss: Optional[torch.FloatTensor] = None
|
131 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
132 |
+
last_hidden_state: torch.FloatTensor = None
|
133 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
134 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
135 |
+
|
136 |
+
|
137 |
+
@dataclass
|
138 |
+
class BlipImageTextMatchingModelOutput(ModelOutput):
|
139 |
+
"""
|
140 |
+
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
|
141 |
+
last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity
|
142 |
+
scores.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
itm_score (`torch.FloatTensor`):
|
146 |
+
The image-text similarity scores.
|
147 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
148 |
+
Languge modeling loss from the text decoder.
|
149 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
150 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
151 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
152 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
153 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
154 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
155 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
156 |
+
|
157 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
158 |
+
vision_pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*):
|
159 |
+
Last layer hidden-state of the vision of the vision-only branch of the model.
|
160 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
161 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
162 |
+
sequence_length)`.
|
163 |
+
|
164 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
165 |
+
heads.
|
166 |
+
question_embeds (`torch.FloatTensor`):
|
167 |
+
The question embeddings obtained by the text projection layer.
|
168 |
+
"""
|
169 |
+
|
170 |
+
itm_score: Optional[torch.FloatTensor] = None
|
171 |
+
loss: Optional[torch.FloatTensor] = None
|
172 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
173 |
+
last_hidden_state: torch.FloatTensor = None
|
174 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
175 |
+
vision_pooler_output: Optional[torch.FloatTensor] = None
|
176 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
177 |
+
question_embeds: Optional[Tuple[torch.FloatTensor]] = None
|
178 |
+
|
179 |
+
|
180 |
+
@dataclass
|
181 |
+
class BlipOutput(ModelOutput):
|
182 |
+
"""
|
183 |
+
Args:
|
184 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
185 |
+
Contrastive loss for image-text similarity.
|
186 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
187 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
188 |
+
similarity scores.
|
189 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
190 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
191 |
+
similarity scores.
|
192 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
193 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`].
|
194 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
195 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`].
|
196 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
197 |
+
The output of the [`BlipTextModel`].
|
198 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
199 |
+
The output of the [`BlipVisionModel`].
|
200 |
+
"""
|
201 |
+
|
202 |
+
loss: Optional[torch.FloatTensor] = None
|
203 |
+
logits_per_image: torch.FloatTensor = None
|
204 |
+
logits_per_text: torch.FloatTensor = None
|
205 |
+
text_embeds: torch.FloatTensor = None
|
206 |
+
image_embeds: torch.FloatTensor = None
|
207 |
+
text_model_output: BaseModelOutputWithPooling = None
|
208 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
209 |
+
|
210 |
+
def to_tuple(self) -> Tuple[Any]:
|
211 |
+
return tuple(
|
212 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
213 |
+
for k in self.keys()
|
214 |
+
)
|
215 |
+
|
216 |
+
|
217 |
+
class BlipVisionEmbeddings(nn.Module):
|
218 |
+
def __init__(self, config: BlipVisionConfig):
|
219 |
+
super().__init__()
|
220 |
+
self.config = config
|
221 |
+
self.embed_dim = config.hidden_size
|
222 |
+
self.image_size = config.image_size
|
223 |
+
self.patch_size = config.patch_size
|
224 |
+
|
225 |
+
self.class_embedding = nn.Parameter(
|
226 |
+
torch.randn(1, 1, self.embed_dim),
|
227 |
+
)
|
228 |
+
|
229 |
+
self.patch_embedding = nn.Conv2d(
|
230 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
231 |
+
)
|
232 |
+
|
233 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
234 |
+
self.num_positions = self.num_patches + 1
|
235 |
+
|
236 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
237 |
+
|
238 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
239 |
+
batch_size = pixel_values.shape[0]
|
240 |
+
target_dtype = self.patch_embedding.weight.dtype
|
241 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
242 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
243 |
+
|
244 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
245 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
246 |
+
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype)
|
247 |
+
return embeddings
|
248 |
+
|
249 |
+
|
250 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Blip
|
251 |
+
class BlipTextEmbeddings(nn.Module):
|
252 |
+
def __init__(self, config: BlipTextConfig):
|
253 |
+
super().__init__()
|
254 |
+
embed_dim = config.hidden_size
|
255 |
+
|
256 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
257 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
258 |
+
|
259 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
260 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
261 |
+
|
262 |
+
def forward(
|
263 |
+
self,
|
264 |
+
input_ids: Optional[torch.LongTensor] = None,
|
265 |
+
position_ids: Optional[torch.LongTensor] = None,
|
266 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
267 |
+
) -> torch.Tensor:
|
268 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
269 |
+
|
270 |
+
if position_ids is None:
|
271 |
+
position_ids = self.position_ids[:, :seq_length]
|
272 |
+
|
273 |
+
if inputs_embeds is None:
|
274 |
+
inputs_embeds = self.token_embedding(input_ids)
|
275 |
+
|
276 |
+
position_embeddings = self.position_embedding(position_ids)
|
277 |
+
embeddings = inputs_embeds + position_embeddings
|
278 |
+
|
279 |
+
return embeddings
|
280 |
+
|
281 |
+
|
282 |
+
class BlipAttention(nn.Module):
|
283 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
284 |
+
|
285 |
+
def __init__(self, config):
|
286 |
+
super().__init__()
|
287 |
+
self.config = config
|
288 |
+
self.embed_dim = config.hidden_size
|
289 |
+
self.num_heads = config.num_attention_heads
|
290 |
+
self.head_dim = self.embed_dim // self.num_heads
|
291 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
292 |
+
raise ValueError(
|
293 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
294 |
+
f" {self.num_heads})."
|
295 |
+
)
|
296 |
+
self.scale = self.head_dim**-0.5
|
297 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
298 |
+
|
299 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim)
|
300 |
+
|
301 |
+
self.projection = nn.Linear(self.embed_dim, self.embed_dim)
|
302 |
+
|
303 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
304 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
305 |
+
|
306 |
+
def forward(
|
307 |
+
self,
|
308 |
+
hidden_states: torch.Tensor,
|
309 |
+
head_mask: Optional[torch.Tensor] = None,
|
310 |
+
output_attentions: Optional[bool] = False,
|
311 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
312 |
+
"""Input shape: Batch x Time x Channel"""
|
313 |
+
|
314 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
315 |
+
|
316 |
+
mixed_qkv = self.qkv(hidden_states)
|
317 |
+
mixed_qkv = (
|
318 |
+
self.qkv(hidden_states)
|
319 |
+
.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads)
|
320 |
+
.permute(2, 0, 3, 1, 4)
|
321 |
+
)
|
322 |
+
query_states, key_states, value_states = (
|
323 |
+
mixed_qkv[0],
|
324 |
+
mixed_qkv[1],
|
325 |
+
mixed_qkv[2],
|
326 |
+
)
|
327 |
+
|
328 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
329 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
330 |
+
|
331 |
+
attention_scores = attention_scores * self.scale
|
332 |
+
|
333 |
+
# Normalize the attention scores to probabilities.
|
334 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
335 |
+
|
336 |
+
# This is actually dropping out entire tokens to attend to, which might
|
337 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
338 |
+
attention_probs = self.dropout(attention_probs)
|
339 |
+
|
340 |
+
# Mask heads if we want to
|
341 |
+
if head_mask is not None:
|
342 |
+
attention_probs = attention_probs * head_mask
|
343 |
+
|
344 |
+
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
|
345 |
+
|
346 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
|
347 |
+
context_layer = context_layer.reshape(new_context_layer_shape)
|
348 |
+
|
349 |
+
output = self.projection(context_layer)
|
350 |
+
|
351 |
+
outputs = (output, attention_probs) if output_attentions else (output, None)
|
352 |
+
|
353 |
+
return outputs
|
354 |
+
|
355 |
+
|
356 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Blip
|
357 |
+
class BlipMLP(nn.Module):
|
358 |
+
def __init__(self, config):
|
359 |
+
super().__init__()
|
360 |
+
self.config = config
|
361 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
362 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
363 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
364 |
+
|
365 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
366 |
+
hidden_states = self.fc1(hidden_states)
|
367 |
+
hidden_states = self.activation_fn(hidden_states)
|
368 |
+
hidden_states = self.fc2(hidden_states)
|
369 |
+
return hidden_states
|
370 |
+
|
371 |
+
|
372 |
+
class BlipEncoderLayer(nn.Module):
|
373 |
+
def __init__(self, config: BlipConfig):
|
374 |
+
super().__init__()
|
375 |
+
self.embed_dim = config.hidden_size
|
376 |
+
self.self_attn = BlipAttention(config)
|
377 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
378 |
+
self.mlp = BlipMLP(config)
|
379 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
380 |
+
|
381 |
+
def forward(
|
382 |
+
self,
|
383 |
+
hidden_states: torch.Tensor,
|
384 |
+
attention_mask: torch.Tensor,
|
385 |
+
output_attentions: Optional[bool] = False,
|
386 |
+
) -> Tuple[torch.FloatTensor]:
|
387 |
+
"""
|
388 |
+
Args:
|
389 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
390 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
391 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
392 |
+
`(config.encoder_attention_heads,)`.
|
393 |
+
output_attentions (`bool`, *optional*):
|
394 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
395 |
+
returned tensors for more detail.
|
396 |
+
"""
|
397 |
+
residual = hidden_states
|
398 |
+
|
399 |
+
hidden_states = self.layer_norm1(hidden_states)
|
400 |
+
hidden_states, attn_weights = self.self_attn(
|
401 |
+
hidden_states=hidden_states,
|
402 |
+
head_mask=attention_mask,
|
403 |
+
output_attentions=output_attentions,
|
404 |
+
)
|
405 |
+
hidden_states = hidden_states + residual
|
406 |
+
residual = hidden_states
|
407 |
+
hidden_states = self.layer_norm2(hidden_states)
|
408 |
+
hidden_states = self.mlp(hidden_states)
|
409 |
+
|
410 |
+
hidden_states = hidden_states + residual
|
411 |
+
|
412 |
+
outputs = (hidden_states,)
|
413 |
+
|
414 |
+
if output_attentions:
|
415 |
+
outputs += (attn_weights,)
|
416 |
+
|
417 |
+
return outputs
|
418 |
+
|
419 |
+
|
420 |
+
class BlipPreTrainedModel(PreTrainedModel):
|
421 |
+
"""
|
422 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
423 |
+
models.
|
424 |
+
"""
|
425 |
+
|
426 |
+
config_class = BlipConfig
|
427 |
+
base_model_prefix = "blip"
|
428 |
+
supports_gradient_checkpointing = True
|
429 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
430 |
+
|
431 |
+
def _init_weights(self, module):
|
432 |
+
"""Initialize the weights"""
|
433 |
+
factor = self.config.initializer_range
|
434 |
+
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
|
435 |
+
module.weight.data.normal_(mean=0.0, std=factor)
|
436 |
+
if hasattr(module, "bias") and module.bias is not None:
|
437 |
+
module.bias.data.zero_()
|
438 |
+
|
439 |
+
if isinstance(module, BlipVisionEmbeddings):
|
440 |
+
if hasattr(self.config, "vision_config"):
|
441 |
+
factor = self.config.vision_config.initializer_range
|
442 |
+
nn.init.trunc_normal_(
|
443 |
+
module.position_embedding,
|
444 |
+
mean=0.0,
|
445 |
+
std=factor,
|
446 |
+
)
|
447 |
+
|
448 |
+
nn.init.trunc_normal_(
|
449 |
+
module.class_embedding,
|
450 |
+
mean=0.0,
|
451 |
+
std=factor,
|
452 |
+
)
|
453 |
+
|
454 |
+
elif isinstance(module, nn.LayerNorm):
|
455 |
+
module.bias.data.zero_()
|
456 |
+
module.weight.data.fill_(1.0)
|
457 |
+
elif isinstance(module, nn.Linear) and module.bias is not None:
|
458 |
+
module.bias.data.zero_()
|
459 |
+
|
460 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
461 |
+
if isinstance(module, BlipEncoder):
|
462 |
+
module.gradient_checkpointing = value
|
463 |
+
|
464 |
+
|
465 |
+
BLIP_START_DOCSTRING = r"""
|
466 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
467 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
468 |
+
etc.)
|
469 |
+
|
470 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
471 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
472 |
+
and behavior.
|
473 |
+
|
474 |
+
Parameters:
|
475 |
+
config ([`BlipConfig`]): Model configuration class with all the parameters of the model.
|
476 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
477 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
478 |
+
"""
|
479 |
+
|
480 |
+
BLIP_TEXT_INPUTS_DOCSTRING = r"""
|
481 |
+
Args:
|
482 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
483 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
484 |
+
it.
|
485 |
+
|
486 |
+
Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details.
|
487 |
+
|
488 |
+
[What are input IDs?](../glossary#input-ids)
|
489 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
490 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
491 |
+
|
492 |
+
- 1 for tokens that are **not masked**,
|
493 |
+
- 0 for tokens that are **masked**.
|
494 |
+
|
495 |
+
[What are attention masks?](../glossary#attention-mask)
|
496 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
497 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
498 |
+
config.max_position_embeddings - 1]`.
|
499 |
+
|
500 |
+
[What are position IDs?](../glossary#position-ids)
|
501 |
+
output_attentions (`bool`, *optional*):
|
502 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
503 |
+
tensors for more detail.
|
504 |
+
output_hidden_states (`bool`, *optional*):
|
505 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
506 |
+
more detail.
|
507 |
+
return_dict (`bool`, *optional*):
|
508 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
509 |
+
"""
|
510 |
+
|
511 |
+
BLIP_VISION_INPUTS_DOCSTRING = r"""
|
512 |
+
Args:
|
513 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
514 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
515 |
+
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
|
516 |
+
output_attentions (`bool`, *optional*):
|
517 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
518 |
+
tensors for more detail.
|
519 |
+
output_hidden_states (`bool`, *optional*):
|
520 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
521 |
+
more detail.
|
522 |
+
return_dict (`bool`, *optional*):
|
523 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
524 |
+
"""
|
525 |
+
|
526 |
+
BLIP_INPUTS_DOCSTRING = r"""
|
527 |
+
Args:
|
528 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
529 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
530 |
+
it.
|
531 |
+
|
532 |
+
Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details.
|
533 |
+
|
534 |
+
[What are input IDs?](../glossary#input-ids)
|
535 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
536 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
537 |
+
|
538 |
+
- 1 for tokens that are **not masked**,
|
539 |
+
- 0 for tokens that are **masked**.
|
540 |
+
|
541 |
+
[What are attention masks?](../glossary#attention-mask)
|
542 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
543 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
544 |
+
config.max_position_embeddings - 1]`.
|
545 |
+
|
546 |
+
[What are position IDs?](../glossary#position-ids)
|
547 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
548 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
549 |
+
[`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
|
550 |
+
return_loss (`bool`, *optional*):
|
551 |
+
Whether or not to return the contrastive loss.
|
552 |
+
output_attentions (`bool`, *optional*):
|
553 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
554 |
+
tensors for more detail.
|
555 |
+
output_hidden_states (`bool`, *optional*):
|
556 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
557 |
+
more detail.
|
558 |
+
return_dict (`bool`, *optional*):
|
559 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
560 |
+
"""
|
561 |
+
|
562 |
+
|
563 |
+
class BlipEncoder(nn.Module):
|
564 |
+
"""
|
565 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
566 |
+
[`BlipEncoderLayer`].
|
567 |
+
|
568 |
+
Args:
|
569 |
+
config (`BlipConfig`):
|
570 |
+
The corresponding vision configuration for the `BlipEncoder`.
|
571 |
+
"""
|
572 |
+
|
573 |
+
def __init__(self, config: BlipConfig):
|
574 |
+
super().__init__()
|
575 |
+
self.config = config
|
576 |
+
self.layers = nn.ModuleList([BlipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
577 |
+
self.gradient_checkpointing = False
|
578 |
+
|
579 |
+
def forward(
|
580 |
+
self,
|
581 |
+
inputs_embeds,
|
582 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
583 |
+
output_attentions: Optional[bool] = None,
|
584 |
+
output_hidden_states: Optional[bool] = None,
|
585 |
+
return_dict: Optional[bool] = None,
|
586 |
+
) -> Union[Tuple, BaseModelOutput]:
|
587 |
+
r"""
|
588 |
+
Args:
|
589 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
590 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
591 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
592 |
+
than the model's internal embedding lookup matrix.
|
593 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
594 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
595 |
+
|
596 |
+
- 1 for tokens that are **not masked**,
|
597 |
+
- 0 for tokens that are **masked**.
|
598 |
+
|
599 |
+
[What are attention masks?](../glossary#attention-mask)
|
600 |
+
output_attentions (`bool`, *optional*):
|
601 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
602 |
+
returned tensors for more detail.
|
603 |
+
output_hidden_states (`bool`, *optional*):
|
604 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
605 |
+
for more detail.
|
606 |
+
return_dict (`bool`, *optional*):
|
607 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
608 |
+
"""
|
609 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
610 |
+
output_hidden_states = (
|
611 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
612 |
+
)
|
613 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
614 |
+
|
615 |
+
encoder_states = () if output_hidden_states else None
|
616 |
+
all_attentions = () if output_attentions else None
|
617 |
+
|
618 |
+
hidden_states = inputs_embeds
|
619 |
+
for idx, encoder_layer in enumerate(self.layers):
|
620 |
+
if output_hidden_states:
|
621 |
+
encoder_states = encoder_states + (hidden_states,)
|
622 |
+
if self.gradient_checkpointing and self.training:
|
623 |
+
|
624 |
+
def create_custom_forward(module):
|
625 |
+
def custom_forward(*inputs):
|
626 |
+
return module(*inputs, output_attentions)
|
627 |
+
|
628 |
+
return custom_forward
|
629 |
+
|
630 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
631 |
+
create_custom_forward(encoder_layer),
|
632 |
+
hidden_states,
|
633 |
+
attention_mask,
|
634 |
+
)
|
635 |
+
else:
|
636 |
+
layer_outputs = encoder_layer(
|
637 |
+
hidden_states,
|
638 |
+
attention_mask,
|
639 |
+
output_attentions=output_attentions,
|
640 |
+
)
|
641 |
+
|
642 |
+
hidden_states = layer_outputs[0]
|
643 |
+
|
644 |
+
if output_attentions:
|
645 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
646 |
+
|
647 |
+
if output_hidden_states:
|
648 |
+
encoder_states = encoder_states + (hidden_states,)
|
649 |
+
|
650 |
+
if not return_dict:
|
651 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
652 |
+
return BaseModelOutput(
|
653 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
654 |
+
)
|
655 |
+
|
656 |
+
|
657 |
+
class BlipVisionModel(BlipPreTrainedModel):
|
658 |
+
main_input_name = "pixel_values"
|
659 |
+
config_class = BlipVisionConfig
|
660 |
+
|
661 |
+
def __init__(self, config: BlipVisionConfig):
|
662 |
+
super().__init__(config)
|
663 |
+
self.config = config
|
664 |
+
embed_dim = config.hidden_size
|
665 |
+
self.embeddings = BlipVisionEmbeddings(config)
|
666 |
+
self.patch_mask_generator = ViTPatchMaskGenerator(config.patch_size)
|
667 |
+
self.encoder = BlipEncoder(config)
|
668 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
669 |
+
|
670 |
+
self.post_init()
|
671 |
+
|
672 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
673 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=BlipVisionConfig)
|
674 |
+
def forward(
|
675 |
+
self,
|
676 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
677 |
+
pixel_masks: Optional[torch.LongTensor] = None,
|
678 |
+
output_attentions: Optional[bool] = None,
|
679 |
+
output_hidden_states: Optional[bool] = None,
|
680 |
+
return_dict: Optional[bool] = None,
|
681 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
682 |
+
r"""
|
683 |
+
Returns:
|
684 |
+
|
685 |
+
"""
|
686 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
687 |
+
output_hidden_states = (
|
688 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
689 |
+
)
|
690 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
691 |
+
|
692 |
+
if pixel_values is None:
|
693 |
+
raise ValueError("You have to specify pixel_values")
|
694 |
+
|
695 |
+
hidden_states = self.embeddings(pixel_values)
|
696 |
+
B, N, D = hidden_states.shape
|
697 |
+
# print('Before mask:', hidden_states.shape)
|
698 |
+
if pixel_masks is not None:
|
699 |
+
assert pixel_masks.shape[0] == 1
|
700 |
+
patch_masks = self.patch_mask_generator(pixel_masks)
|
701 |
+
# print(patch_masks.shape)
|
702 |
+
patch_masks = patch_masks.unsqueeze(-1).expand_as(hidden_states)
|
703 |
+
hidden_states = hidden_states.masked_select(patch_masks).view(B, -1, D)
|
704 |
+
# print('After mask:', hidden_states.shape)
|
705 |
+
|
706 |
+
encoder_outputs = self.encoder(
|
707 |
+
inputs_embeds=hidden_states,
|
708 |
+
output_attentions=output_attentions,
|
709 |
+
output_hidden_states=output_hidden_states,
|
710 |
+
return_dict=return_dict,
|
711 |
+
)
|
712 |
+
|
713 |
+
last_hidden_state = encoder_outputs[0]
|
714 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
715 |
+
|
716 |
+
pooled_output = last_hidden_state[:, 0, :]
|
717 |
+
pooled_output = self.post_layernorm(pooled_output)
|
718 |
+
|
719 |
+
if not return_dict:
|
720 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
721 |
+
|
722 |
+
return BaseModelOutputWithPooling(
|
723 |
+
last_hidden_state=last_hidden_state,
|
724 |
+
pooler_output=pooled_output,
|
725 |
+
hidden_states=encoder_outputs.hidden_states,
|
726 |
+
attentions=encoder_outputs.attentions,
|
727 |
+
)
|
728 |
+
|
729 |
+
def get_input_embeddings(self):
|
730 |
+
return self.embeddings
|
731 |
+
|
732 |
+
|
733 |
+
@add_start_docstrings(BLIP_START_DOCSTRING)
|
734 |
+
class BlipModel(BlipPreTrainedModel):
|
735 |
+
config_class = BlipConfig
|
736 |
+
|
737 |
+
def __init__(self, config: BlipConfig):
|
738 |
+
super().__init__(config)
|
739 |
+
|
740 |
+
if not isinstance(config.text_config, BlipTextConfig):
|
741 |
+
raise ValueError(
|
742 |
+
"config.text_config is expected to be of type BlipTextConfig but is of type"
|
743 |
+
f" {type(config.text_config)}."
|
744 |
+
)
|
745 |
+
|
746 |
+
if not isinstance(config.vision_config, BlipVisionConfig):
|
747 |
+
raise ValueError(
|
748 |
+
"config.vision_config is expected to be of type BlipVisionConfig but is of type"
|
749 |
+
f" {type(config.vision_config)}."
|
750 |
+
)
|
751 |
+
|
752 |
+
text_config = config.text_config
|
753 |
+
vision_config = config.vision_config
|
754 |
+
|
755 |
+
self.projection_dim = config.projection_dim
|
756 |
+
self.text_embed_dim = text_config.hidden_size
|
757 |
+
self.vision_embed_dim = vision_config.hidden_size
|
758 |
+
|
759 |
+
self.text_model = BlipTextModel(text_config)
|
760 |
+
self.vision_model = BlipVisionModel(vision_config)
|
761 |
+
|
762 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
763 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
|
764 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * self.config.logit_scale_init_value)
|
765 |
+
|
766 |
+
# Initialize weights and apply final processing
|
767 |
+
self.post_init()
|
768 |
+
|
769 |
+
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
|
770 |
+
def get_text_features(
|
771 |
+
self,
|
772 |
+
input_ids: Optional[torch.Tensor] = None,
|
773 |
+
attention_mask: Optional[torch.Tensor] = None,
|
774 |
+
position_ids: Optional[torch.Tensor] = None,
|
775 |
+
return_dict: Optional[bool] = None,
|
776 |
+
) -> torch.FloatTensor:
|
777 |
+
r"""
|
778 |
+
Returns:
|
779 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
780 |
+
applying the projection layer to the pooled output of [`BlipTextModel`].
|
781 |
+
|
782 |
+
Examples:
|
783 |
+
|
784 |
+
```python
|
785 |
+
>>> from transformers import AutoProcessor, BlipModel
|
786 |
+
|
787 |
+
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
788 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
789 |
+
|
790 |
+
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
791 |
+
>>> text_features = model.get_text_features(**inputs)
|
792 |
+
```"""
|
793 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
794 |
+
|
795 |
+
text_outputs = self.text_model(
|
796 |
+
input_ids=input_ids,
|
797 |
+
attention_mask=attention_mask,
|
798 |
+
position_ids=position_ids,
|
799 |
+
return_dict=return_dict,
|
800 |
+
)
|
801 |
+
|
802 |
+
pooled_output = text_outputs[1]
|
803 |
+
text_features = self.text_projection(pooled_output)
|
804 |
+
|
805 |
+
return text_features
|
806 |
+
|
807 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
808 |
+
def get_image_features(
|
809 |
+
self,
|
810 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
811 |
+
return_dict: Optional[bool] = None,
|
812 |
+
) -> torch.FloatTensor:
|
813 |
+
r"""
|
814 |
+
Returns:
|
815 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
816 |
+
applying the projection layer to the pooled output of [`BlipVisionModel`].
|
817 |
+
|
818 |
+
Examples:
|
819 |
+
|
820 |
+
```python
|
821 |
+
>>> from PIL import Image
|
822 |
+
>>> import requests
|
823 |
+
>>> from transformers import AutoProcessor, BlipModel
|
824 |
+
|
825 |
+
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
826 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
827 |
+
|
828 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
829 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
830 |
+
|
831 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
832 |
+
|
833 |
+
>>> image_features = model.get_image_features(**inputs)
|
834 |
+
```"""
|
835 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
836 |
+
|
837 |
+
vision_outputs = self.vision_model(
|
838 |
+
pixel_values=pixel_values,
|
839 |
+
return_dict=return_dict,
|
840 |
+
)
|
841 |
+
|
842 |
+
pooled_output = vision_outputs[1] # pooled_output
|
843 |
+
image_features = self.visual_projection(pooled_output)
|
844 |
+
|
845 |
+
return image_features
|
846 |
+
|
847 |
+
@add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING)
|
848 |
+
@replace_return_docstrings(output_type=BlipOutput, config_class=BlipConfig)
|
849 |
+
def forward(
|
850 |
+
self,
|
851 |
+
input_ids: Optional[torch.LongTensor] = None,
|
852 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
853 |
+
pixel_masks: Optional[torch.FloatTensor] = None,
|
854 |
+
attention_mask: Optional[torch.Tensor] = None,
|
855 |
+
position_ids: Optional[torch.LongTensor] = None,
|
856 |
+
return_loss: Optional[bool] = None,
|
857 |
+
output_attentions: Optional[bool] = None,
|
858 |
+
output_hidden_states: Optional[bool] = None,
|
859 |
+
return_dict: Optional[bool] = None,
|
860 |
+
) -> Union[Tuple, BlipOutput]:
|
861 |
+
r"""
|
862 |
+
Returns:
|
863 |
+
|
864 |
+
Examples:
|
865 |
+
|
866 |
+
```python
|
867 |
+
>>> from PIL import Image
|
868 |
+
>>> import requests
|
869 |
+
>>> from transformers import AutoProcessor, BlipModel
|
870 |
+
|
871 |
+
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
|
872 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
873 |
+
|
874 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
875 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
876 |
+
|
877 |
+
>>> inputs = processor(
|
878 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
879 |
+
... )
|
880 |
+
|
881 |
+
>>> outputs = model(**inputs)
|
882 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
883 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
884 |
+
```"""
|
885 |
+
# Use BLIP model's config for some fields (if specified) instead of those of vision & text components.
|
886 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
887 |
+
output_hidden_states = (
|
888 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
889 |
+
)
|
890 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
891 |
+
|
892 |
+
vision_outputs = self.vision_model(
|
893 |
+
pixel_values=pixel_values,
|
894 |
+
pixel_masks=pixel_masks,
|
895 |
+
output_attentions=output_attentions,
|
896 |
+
output_hidden_states=output_hidden_states,
|
897 |
+
return_dict=return_dict,
|
898 |
+
)
|
899 |
+
|
900 |
+
text_outputs = self.text_model(
|
901 |
+
input_ids=input_ids,
|
902 |
+
attention_mask=attention_mask,
|
903 |
+
position_ids=position_ids,
|
904 |
+
output_attentions=output_attentions,
|
905 |
+
output_hidden_states=output_hidden_states,
|
906 |
+
return_dict=return_dict,
|
907 |
+
)
|
908 |
+
|
909 |
+
image_embeds = vision_outputs[1]
|
910 |
+
image_embeds = self.visual_projection(image_embeds)
|
911 |
+
|
912 |
+
text_embeds = text_outputs[1]
|
913 |
+
text_embeds = self.text_projection(text_embeds)
|
914 |
+
|
915 |
+
# normalized features
|
916 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
917 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
918 |
+
|
919 |
+
# cosine similarity as logits
|
920 |
+
logit_scale = self.logit_scale.exp()
|
921 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
922 |
+
logits_per_image = logits_per_text.t()
|
923 |
+
|
924 |
+
loss = None
|
925 |
+
if return_loss:
|
926 |
+
loss = blip_loss(logits_per_text)
|
927 |
+
|
928 |
+
if not return_dict:
|
929 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
930 |
+
return ((loss,) + output) if loss is not None else output
|
931 |
+
|
932 |
+
return BlipOutput(
|
933 |
+
loss=loss,
|
934 |
+
logits_per_image=logits_per_image,
|
935 |
+
logits_per_text=logits_per_text,
|
936 |
+
text_embeds=text_embeds,
|
937 |
+
image_embeds=image_embeds,
|
938 |
+
text_model_output=text_outputs,
|
939 |
+
vision_model_output=vision_outputs,
|
940 |
+
)
|
941 |
+
|
942 |
+
|
943 |
+
@add_start_docstrings(
|
944 |
+
"""
|
945 |
+
BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass
|
946 |
+
`input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise,
|
947 |
+
the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption
|
948 |
+
from the text input. If no text input is provided, the decoder will start with the [BOS] token only.
|
949 |
+
""",
|
950 |
+
BLIP_START_DOCSTRING,
|
951 |
+
)
|
952 |
+
class BlipForConditionalGeneration(BlipPreTrainedModel):
|
953 |
+
config_class = BlipConfig
|
954 |
+
_keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"]
|
955 |
+
main_input_name = "pixel_values"
|
956 |
+
|
957 |
+
def __init__(self, config: BlipConfig):
|
958 |
+
super().__init__(config)
|
959 |
+
|
960 |
+
self.vision_model = BlipVisionModel(config.vision_config)
|
961 |
+
|
962 |
+
self.text_decoder = BlipTextLMHeadModel(config.text_config)
|
963 |
+
|
964 |
+
self.decoder_input_ids = config.text_config.bos_token_id
|
965 |
+
self.decoder_pad_token_id = config.text_config.pad_token_id
|
966 |
+
|
967 |
+
# Initialize weights and apply final processing
|
968 |
+
self.post_init()
|
969 |
+
|
970 |
+
def get_input_embeddings(self) -> nn.Module:
|
971 |
+
return self.vision_model.embeddings.patch_embedding
|
972 |
+
|
973 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
974 |
+
@replace_return_docstrings(output_type=BlipForConditionalGenerationModelOutput, config_class=BlipVisionConfig)
|
975 |
+
def forward(
|
976 |
+
self,
|
977 |
+
pixel_values: torch.FloatTensor,
|
978 |
+
input_ids: Optional[torch.LongTensor] = None,
|
979 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
980 |
+
output_attentions: Optional[bool] = None,
|
981 |
+
output_hidden_states: Optional[bool] = None,
|
982 |
+
labels: Optional[torch.LongTensor] = None,
|
983 |
+
return_dict: Optional[bool] = None,
|
984 |
+
) -> Union[Tuple, BlipForConditionalGenerationModelOutput]:
|
985 |
+
r"""
|
986 |
+
Returns:
|
987 |
+
|
988 |
+
Examples:
|
989 |
+
|
990 |
+
```python
|
991 |
+
>>> from PIL import Image
|
992 |
+
>>> import requests
|
993 |
+
>>> from transformers import AutoProcessor, BlipForConditionalGeneration
|
994 |
+
|
995 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
996 |
+
>>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
997 |
+
|
998 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
999 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1000 |
+
>>> text = "A picture of"
|
1001 |
+
|
1002 |
+
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
1003 |
+
|
1004 |
+
>>> outputs = model(**inputs)
|
1005 |
+
```"""
|
1006 |
+
|
1007 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1008 |
+
|
1009 |
+
vision_outputs = self.vision_model(
|
1010 |
+
pixel_values=pixel_values,
|
1011 |
+
output_attentions=output_attentions,
|
1012 |
+
output_hidden_states=output_hidden_states,
|
1013 |
+
return_dict=return_dict,
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
image_embeds = vision_outputs[0]
|
1017 |
+
|
1018 |
+
outputs = self.text_decoder(
|
1019 |
+
input_ids=input_ids,
|
1020 |
+
attention_mask=attention_mask,
|
1021 |
+
encoder_hidden_states=image_embeds,
|
1022 |
+
labels=labels,
|
1023 |
+
return_dict=return_dict,
|
1024 |
+
reduction="mean",
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
if not return_dict:
|
1028 |
+
outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
1029 |
+
return tuple(output for output in outputs if output is not None)
|
1030 |
+
|
1031 |
+
return BlipForConditionalGenerationModelOutput(
|
1032 |
+
loss=outputs.loss,
|
1033 |
+
decoder_logits=outputs.logits,
|
1034 |
+
image_embeds=image_embeds,
|
1035 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1036 |
+
hidden_states=vision_outputs.hidden_states,
|
1037 |
+
attentions=vision_outputs.attentions,
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
@torch.no_grad()
|
1041 |
+
def generate(
|
1042 |
+
self,
|
1043 |
+
pixel_values: torch.FloatTensor,
|
1044 |
+
pixel_masks: torch.Tensor = None,
|
1045 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1046 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1047 |
+
**generate_kwargs,
|
1048 |
+
) -> torch.LongTensor:
|
1049 |
+
r"""
|
1050 |
+
Overrides *generate* function to be able to use the model as a conditional generator
|
1051 |
+
|
1052 |
+
Parameters:
|
1053 |
+
pixel_values (*torch.FloatTensor* of shape *(batch_size, image_width, image_height)*:
|
1054 |
+
Input image to be processed
|
1055 |
+
input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
|
1056 |
+
The sequence used as a prompt for the generation.
|
1057 |
+
attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
|
1058 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1059 |
+
|
1060 |
+
|
1061 |
+
Examples:
|
1062 |
+
```python
|
1063 |
+
>>> from PIL import Image
|
1064 |
+
>>> import requests
|
1065 |
+
>>> from transformers import AutoProcessor, BlipForConditionalGeneration
|
1066 |
+
|
1067 |
+
>>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
1068 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
1069 |
+
|
1070 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1071 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1072 |
+
|
1073 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1074 |
+
|
1075 |
+
>>> outputs = model.generate(**inputs)
|
1076 |
+
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
1077 |
+
two cats are laying on a couch
|
1078 |
+
```
|
1079 |
+
"""
|
1080 |
+
|
1081 |
+
batch_size = pixel_values.shape[0]
|
1082 |
+
vision_outputs = self.vision_model(
|
1083 |
+
pixel_values=pixel_values,
|
1084 |
+
pixel_masks=pixel_masks,
|
1085 |
+
)
|
1086 |
+
|
1087 |
+
image_embeds = vision_outputs[0]
|
1088 |
+
|
1089 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
|
1090 |
+
|
1091 |
+
if isinstance(input_ids, list):
|
1092 |
+
input_ids = torch.LongTensor(input_ids)
|
1093 |
+
elif input_ids is None:
|
1094 |
+
input_ids = (
|
1095 |
+
torch.LongTensor([[self.decoder_input_ids, self.config.text_config.eos_token_id]])
|
1096 |
+
.repeat(batch_size, 1)
|
1097 |
+
.to(image_embeds.device)
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
input_ids[:, 0] = self.config.text_config.bos_token_id
|
1101 |
+
attention_mask = attention_mask[:, :-1] if attention_mask is not None else None
|
1102 |
+
|
1103 |
+
outputs = self.text_decoder.generate(
|
1104 |
+
input_ids=input_ids[:, :-1],
|
1105 |
+
eos_token_id=self.config.text_config.sep_token_id,
|
1106 |
+
pad_token_id=self.config.text_config.pad_token_id,
|
1107 |
+
attention_mask=attention_mask,
|
1108 |
+
encoder_hidden_states=image_embeds,
|
1109 |
+
encoder_attention_mask=image_attention_mask,
|
1110 |
+
**generate_kwargs,
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
return outputs
|
1114 |
+
|
1115 |
+
|
1116 |
+
@add_start_docstrings(
|
1117 |
+
"""
|
1118 |
+
BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text
|
1119 |
+
decoder. The vision encoder will encode the input image, the text encoder will encode the input question together
|
1120 |
+
with the encoding of the image, and the text decoder will output the answer to the question.
|
1121 |
+
""",
|
1122 |
+
BLIP_START_DOCSTRING,
|
1123 |
+
)
|
1124 |
+
class BlipForQuestionAnswering(BlipPreTrainedModel):
|
1125 |
+
config_class = BlipConfig
|
1126 |
+
_keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"]
|
1127 |
+
|
1128 |
+
def __init__(self, config: BlipConfig):
|
1129 |
+
super().__init__(config)
|
1130 |
+
|
1131 |
+
self.vision_model = BlipVisionModel(config.vision_config)
|
1132 |
+
|
1133 |
+
self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False)
|
1134 |
+
|
1135 |
+
self.text_decoder = BlipTextLMHeadModel(config.text_config)
|
1136 |
+
|
1137 |
+
self.decoder_pad_token_id = config.text_config.pad_token_id
|
1138 |
+
self.decoder_start_token_id = config.text_config.bos_token_id
|
1139 |
+
|
1140 |
+
# Initialize weights and apply final processing
|
1141 |
+
self.post_init()
|
1142 |
+
|
1143 |
+
def get_input_embeddings(self) -> nn.Module:
|
1144 |
+
return self.vision_model.embeddings.patch_embedding
|
1145 |
+
|
1146 |
+
# Adapted from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right
|
1147 |
+
def _shift_right(self, input_ids):
|
1148 |
+
pad_token_id = self.decoder_pad_token_id
|
1149 |
+
|
1150 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
1151 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
1152 |
+
shifted_input_ids[..., 0] = self.decoder_start_token_id
|
1153 |
+
|
1154 |
+
# replace possible -100 values in labels by `pad_token_id`
|
1155 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
1156 |
+
|
1157 |
+
return shifted_input_ids
|
1158 |
+
|
1159 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
1160 |
+
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)
|
1161 |
+
def forward(
|
1162 |
+
self,
|
1163 |
+
input_ids: torch.LongTensor,
|
1164 |
+
pixel_values: torch.FloatTensor,
|
1165 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1166 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1167 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1168 |
+
output_attentions: Optional[bool] = None,
|
1169 |
+
output_hidden_states: Optional[bool] = None,
|
1170 |
+
labels: Optional[torch.LongTensor] = None,
|
1171 |
+
return_dict: Optional[bool] = None,
|
1172 |
+
) -> Union[Tuple, BlipTextVisionModelOutput]:
|
1173 |
+
r"""
|
1174 |
+
Returns:
|
1175 |
+
|
1176 |
+
Examples:
|
1177 |
+
|
1178 |
+
```python
|
1179 |
+
>>> from PIL import Image
|
1180 |
+
>>> import requests
|
1181 |
+
>>> from transformers import AutoProcessor, BlipForQuestionAnswering
|
1182 |
+
|
1183 |
+
>>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
1184 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
1185 |
+
|
1186 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1187 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1188 |
+
|
1189 |
+
>>> # training
|
1190 |
+
>>> text = "How many cats are in the picture?"
|
1191 |
+
>>> label = "2"
|
1192 |
+
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
1193 |
+
>>> labels = processor(text=label, return_tensors="pt").input_ids
|
1194 |
+
|
1195 |
+
>>> inputs["labels"] = labels
|
1196 |
+
>>> outputs = model(**inputs)
|
1197 |
+
>>> loss = outputs.loss
|
1198 |
+
>>> loss.backward()
|
1199 |
+
|
1200 |
+
>>> # inference
|
1201 |
+
>>> text = "How many cats are in the picture?"
|
1202 |
+
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
1203 |
+
>>> outputs = model.generate(**inputs)
|
1204 |
+
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
1205 |
+
2
|
1206 |
+
```"""
|
1207 |
+
if labels is None and decoder_input_ids is None:
|
1208 |
+
raise ValueError(
|
1209 |
+
"Either `decoder_input_ids` or `labels` should be passed when calling `forward` with"
|
1210 |
+
" `BlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you"
|
1211 |
+
" are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`"
|
1212 |
+
)
|
1213 |
+
|
1214 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1215 |
+
|
1216 |
+
vision_outputs = self.vision_model(
|
1217 |
+
pixel_values=pixel_values,
|
1218 |
+
output_attentions=output_attentions,
|
1219 |
+
output_hidden_states=output_hidden_states,
|
1220 |
+
return_dict=return_dict,
|
1221 |
+
)
|
1222 |
+
|
1223 |
+
image_embeds = vision_outputs[0]
|
1224 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
|
1225 |
+
|
1226 |
+
question_embeds = self.text_encoder(
|
1227 |
+
input_ids=input_ids,
|
1228 |
+
attention_mask=attention_mask,
|
1229 |
+
encoder_hidden_states=image_embeds,
|
1230 |
+
encoder_attention_mask=image_attention_mask,
|
1231 |
+
return_dict=return_dict,
|
1232 |
+
)
|
1233 |
+
|
1234 |
+
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
|
1235 |
+
|
1236 |
+
if labels is not None and decoder_input_ids is None:
|
1237 |
+
# get decoder inputs from shifting lm labels to the right - this is used in training mode
|
1238 |
+
decoder_input_ids = self._shift_right(labels)
|
1239 |
+
# replace possible -100 values in labels by `pad_token_id`
|
1240 |
+
labels = labels.masked_fill(labels == self.decoder_pad_token_id, -100)
|
1241 |
+
|
1242 |
+
answer_output = self.text_decoder(
|
1243 |
+
input_ids=decoder_input_ids,
|
1244 |
+
attention_mask=decoder_attention_mask,
|
1245 |
+
encoder_hidden_states=question_embeds,
|
1246 |
+
encoder_attention_mask=attention_mask,
|
1247 |
+
labels=labels,
|
1248 |
+
return_dict=return_dict,
|
1249 |
+
reduction="mean",
|
1250 |
+
)
|
1251 |
+
|
1252 |
+
if labels is not None:
|
1253 |
+
decoder_loss = answer_output.loss.mean() if return_dict else answer_output[0].mean()
|
1254 |
+
else:
|
1255 |
+
decoder_loss = None
|
1256 |
+
|
1257 |
+
if not return_dict:
|
1258 |
+
outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
1259 |
+
return tuple(output for output in outputs if output is not None)
|
1260 |
+
|
1261 |
+
return BlipTextVisionModelOutput(
|
1262 |
+
loss=decoder_loss,
|
1263 |
+
image_embeds=image_embeds,
|
1264 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1265 |
+
hidden_states=vision_outputs.hidden_states,
|
1266 |
+
attentions=vision_outputs.attentions,
|
1267 |
+
)
|
1268 |
+
|
1269 |
+
@torch.no_grad()
|
1270 |
+
def generate(
|
1271 |
+
self,
|
1272 |
+
input_ids: torch.LongTensor,
|
1273 |
+
pixel_values: torch.FloatTensor,
|
1274 |
+
pixel_masks: torch.Tensor = None,
|
1275 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1276 |
+
**generate_kwargs,
|
1277 |
+
) -> torch.LongTensor:
|
1278 |
+
r"""
|
1279 |
+
Overrides *generate* function to be able to use the model as a conditional generator
|
1280 |
+
|
1281 |
+
Parameters:
|
1282 |
+
input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*):
|
1283 |
+
The sequence used as a prompt for the generation.
|
1284 |
+
pixel_values (*torch.FloatTensor* of shape *(batch_size, image_width, image_height)*:
|
1285 |
+
Input image to be processed
|
1286 |
+
attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
|
1287 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for
|
1288 |
+
tokens that are NOT MASKED, `0` for MASKED tokens.
|
1289 |
+
**generate_kwargs:
|
1290 |
+
Additional arguments passed to the *generate* function of the decoder
|
1291 |
+
|
1292 |
+
|
1293 |
+
Examples:
|
1294 |
+
```python
|
1295 |
+
>>> from PIL import Image
|
1296 |
+
>>> import requests
|
1297 |
+
>>> from transformers import AutoProcessor, BlipForQuestionAnswering
|
1298 |
+
|
1299 |
+
>>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
1300 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
1301 |
+
|
1302 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1303 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1304 |
+
>>> text = "How many cats are in the picture?"
|
1305 |
+
|
1306 |
+
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
1307 |
+
|
1308 |
+
>>> outputs = model.generate(**inputs)
|
1309 |
+
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
|
1310 |
+
2
|
1311 |
+
```
|
1312 |
+
"""
|
1313 |
+
vision_outputs = self.vision_model(
|
1314 |
+
pixel_values=pixel_values,
|
1315 |
+
pixel_masks=pixel_masks
|
1316 |
+
)
|
1317 |
+
|
1318 |
+
image_embeds = vision_outputs[0]
|
1319 |
+
|
1320 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
|
1321 |
+
|
1322 |
+
if isinstance(input_ids, list):
|
1323 |
+
input_ids = torch.LongTensor(input_ids)
|
1324 |
+
|
1325 |
+
question_outputs = self.text_encoder(
|
1326 |
+
input_ids=input_ids,
|
1327 |
+
attention_mask=attention_mask,
|
1328 |
+
encoder_hidden_states=image_embeds,
|
1329 |
+
encoder_attention_mask=image_attention_mask,
|
1330 |
+
return_dict=False,
|
1331 |
+
)
|
1332 |
+
|
1333 |
+
question_embeds = question_outputs[0]
|
1334 |
+
|
1335 |
+
question_attention_mask = torch.ones(question_embeds.size()[:-1], dtype=torch.long).to(question_embeds.device)
|
1336 |
+
|
1337 |
+
bos_ids = torch.full(
|
1338 |
+
(question_embeds.size(0), 1), fill_value=self.decoder_start_token_id, device=question_embeds.device
|
1339 |
+
)
|
1340 |
+
|
1341 |
+
outputs = self.text_decoder.generate(
|
1342 |
+
input_ids=bos_ids,
|
1343 |
+
eos_token_id=self.config.text_config.sep_token_id,
|
1344 |
+
pad_token_id=self.config.text_config.pad_token_id,
|
1345 |
+
encoder_hidden_states=question_embeds,
|
1346 |
+
encoder_attention_mask=question_attention_mask,
|
1347 |
+
**generate_kwargs,
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
return outputs
|
1351 |
+
|
1352 |
+
|
1353 |
+
@add_start_docstrings(
|
1354 |
+
"""
|
1355 |
+
BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of
|
1356 |
+
image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to
|
1357 |
+
the image.
|
1358 |
+
""",
|
1359 |
+
BLIP_START_DOCSTRING,
|
1360 |
+
)
|
1361 |
+
class BlipForImageTextRetrieval(BlipPreTrainedModel):
|
1362 |
+
config_class = BlipConfig
|
1363 |
+
|
1364 |
+
def __init__(self, config: BlipConfig):
|
1365 |
+
super().__init__(config)
|
1366 |
+
|
1367 |
+
self.vision_model = BlipVisionModel(config.vision_config)
|
1368 |
+
|
1369 |
+
self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False)
|
1370 |
+
|
1371 |
+
# vision projection layer
|
1372 |
+
self.vision_proj = nn.Linear(config.vision_config.hidden_size, config.image_text_hidden_size)
|
1373 |
+
|
1374 |
+
# text projection layer
|
1375 |
+
self.text_proj = nn.Linear(config.text_config.hidden_size, config.image_text_hidden_size)
|
1376 |
+
|
1377 |
+
# image text matching head
|
1378 |
+
self.itm_head = nn.Linear(config.text_config.hidden_size, 2)
|
1379 |
+
|
1380 |
+
self.decoder_pad_token_id = (
|
1381 |
+
config.text_config.pad_token_id
|
1382 |
+
if not hasattr(config, "decoder_pad_token_id")
|
1383 |
+
else config.decoder_pad_token_id
|
1384 |
+
)
|
1385 |
+
self.decoder_start_token_id = (
|
1386 |
+
config.text_config.bos_token_id
|
1387 |
+
if not hasattr(config, "decoder_start_token_id")
|
1388 |
+
else config.decoder_start_token_id
|
1389 |
+
)
|
1390 |
+
|
1391 |
+
# Initialize weights and apply final processing
|
1392 |
+
self.post_init()
|
1393 |
+
|
1394 |
+
def get_input_embeddings(self) -> nn.Module:
|
1395 |
+
return self.vision_model.embeddings.patch_embedding
|
1396 |
+
|
1397 |
+
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
|
1398 |
+
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)
|
1399 |
+
def forward(
|
1400 |
+
self,
|
1401 |
+
input_ids: torch.LongTensor,
|
1402 |
+
pixel_values: torch.FloatTensor,
|
1403 |
+
use_itm_head: Optional[bool] = True,
|
1404 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1405 |
+
output_attentions: Optional[bool] = None,
|
1406 |
+
output_hidden_states: Optional[bool] = None,
|
1407 |
+
return_dict: Optional[bool] = None,
|
1408 |
+
) -> Union[Tuple, BlipTextVisionModelOutput]:
|
1409 |
+
r"""
|
1410 |
+
Returns:
|
1411 |
+
|
1412 |
+
Examples:
|
1413 |
+
|
1414 |
+
```python
|
1415 |
+
>>> from PIL import Image
|
1416 |
+
>>> import requests
|
1417 |
+
>>> from transformers import AutoProcessor, BlipForImageTextRetrieval
|
1418 |
+
|
1419 |
+
>>> model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco")
|
1420 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
|
1421 |
+
|
1422 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1423 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1424 |
+
>>> text = "an image of a cat"
|
1425 |
+
|
1426 |
+
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
1427 |
+
>>> outputs = model(**inputs)
|
1428 |
+
```
|
1429 |
+
"""
|
1430 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1431 |
+
|
1432 |
+
vision_outputs = self.vision_model(
|
1433 |
+
pixel_values=pixel_values,
|
1434 |
+
output_attentions=output_attentions,
|
1435 |
+
output_hidden_states=output_hidden_states,
|
1436 |
+
return_dict=return_dict,
|
1437 |
+
)
|
1438 |
+
|
1439 |
+
image_embeds = vision_outputs[0]
|
1440 |
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
|
1441 |
+
|
1442 |
+
if use_itm_head:
|
1443 |
+
question_embeds = self.text_encoder(
|
1444 |
+
input_ids=input_ids,
|
1445 |
+
attention_mask=attention_mask,
|
1446 |
+
encoder_hidden_states=image_embeds,
|
1447 |
+
encoder_attention_mask=image_atts,
|
1448 |
+
return_dict=return_dict,
|
1449 |
+
)
|
1450 |
+
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
|
1451 |
+
|
1452 |
+
output = self.itm_head(question_embeds[:, 0, :])
|
1453 |
+
else:
|
1454 |
+
question_embeds = self.text_encoder(
|
1455 |
+
input_ids=input_ids,
|
1456 |
+
attention_mask=attention_mask,
|
1457 |
+
return_dict=return_dict,
|
1458 |
+
)
|
1459 |
+
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
|
1460 |
+
|
1461 |
+
image_feat = normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
|
1462 |
+
text_feat = normalize(self.text_proj(question_embeds[:, 0, :]), dim=-1)
|
1463 |
+
|
1464 |
+
output = image_feat @ text_feat.t()
|
1465 |
+
|
1466 |
+
if not return_dict:
|
1467 |
+
outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,)
|
1468 |
+
return tuple(output for output in outputs if output is not None)
|
1469 |
+
|
1470 |
+
return BlipImageTextMatchingModelOutput(
|
1471 |
+
itm_score=output,
|
1472 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1473 |
+
hidden_states=vision_outputs.hidden_states,
|
1474 |
+
attentions=vision_outputs.attentions,
|
1475 |
+
question_embeds=question_embeds,
|
1476 |
+
)
|
captioner/modeling_git.py
ADDED
@@ -0,0 +1,1587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team.
|
3 |
+
# All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch GIT model."""
|
17 |
+
|
18 |
+
|
19 |
+
import math
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import CrossEntropyLoss
|
27 |
+
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.file_utils import ModelOutput
|
30 |
+
from transformers.modeling_outputs import (
|
31 |
+
BaseModelOutput,
|
32 |
+
BaseModelOutputWithPast,
|
33 |
+
BaseModelOutputWithPooling,
|
34 |
+
CausalLMOutputWithPast,
|
35 |
+
)
|
36 |
+
from transformers.modeling_utils import PreTrainedModel
|
37 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
38 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
39 |
+
from transformers.models.git.configuration_git import GitConfig, GitVisionConfig
|
40 |
+
from .vit_pixel_masks_utils import ViTPatchMaskGenerator
|
41 |
+
|
42 |
+
|
43 |
+
logger = logging.get_logger(__name__)
|
44 |
+
|
45 |
+
_CHECKPOINT_FOR_DOC = "microsoft/git-base"
|
46 |
+
_CONFIG_FOR_DOC = "GitConfig"
|
47 |
+
|
48 |
+
GIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
49 |
+
"microsoft/git-base",
|
50 |
+
# See all GIT models at https://huggingface.co/models?filter=git
|
51 |
+
]
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass
|
55 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Git
|
56 |
+
class GitVisionModelOutput(ModelOutput):
|
57 |
+
"""
|
58 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
62 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
63 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
64 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
65 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
66 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
67 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
68 |
+
|
69 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
70 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
71 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
72 |
+
sequence_length)`.
|
73 |
+
|
74 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
75 |
+
heads.
|
76 |
+
"""
|
77 |
+
|
78 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
79 |
+
last_hidden_state: torch.FloatTensor = None
|
80 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
81 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
82 |
+
|
83 |
+
|
84 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
85 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
86 |
+
"""
|
87 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
88 |
+
"""
|
89 |
+
bsz, src_len = mask.size()
|
90 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
91 |
+
|
92 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
93 |
+
|
94 |
+
inverted_mask = 1.0 - expanded_mask
|
95 |
+
|
96 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
97 |
+
|
98 |
+
|
99 |
+
class GitEmbeddings(nn.Module):
|
100 |
+
"""Construct the embeddings from word and position embeddings."""
|
101 |
+
|
102 |
+
def __init__(self, config):
|
103 |
+
super().__init__()
|
104 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
105 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
106 |
+
|
107 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
108 |
+
# any TensorFlow checkpoint file
|
109 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
110 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
111 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
112 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
113 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self,
|
117 |
+
input_ids: Optional[torch.LongTensor] = None,
|
118 |
+
position_ids: Optional[torch.LongTensor] = None,
|
119 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
120 |
+
past_key_values_length: int = 0,
|
121 |
+
) -> torch.Tensor:
|
122 |
+
if input_ids is not None:
|
123 |
+
input_shape = input_ids.size()
|
124 |
+
else:
|
125 |
+
input_shape = inputs_embeds.size()[:-1]
|
126 |
+
|
127 |
+
seq_length = input_shape[1]
|
128 |
+
|
129 |
+
if position_ids is None:
|
130 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
131 |
+
|
132 |
+
if inputs_embeds is None:
|
133 |
+
embeddings = self.word_embeddings(input_ids)
|
134 |
+
else:
|
135 |
+
embeddings = inputs_embeds
|
136 |
+
|
137 |
+
if self.position_embedding_type == "absolute":
|
138 |
+
position_embeddings = self.position_embeddings(position_ids)
|
139 |
+
embeddings += position_embeddings
|
140 |
+
embeddings = self.LayerNorm(embeddings)
|
141 |
+
embeddings = self.dropout(embeddings)
|
142 |
+
return embeddings
|
143 |
+
|
144 |
+
|
145 |
+
class GitSelfAttention(nn.Module):
|
146 |
+
def __init__(self, config, position_embedding_type=None):
|
147 |
+
super().__init__()
|
148 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
149 |
+
raise ValueError(
|
150 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
151 |
+
f"heads ({config.num_attention_heads})"
|
152 |
+
)
|
153 |
+
|
154 |
+
self.num_attention_heads = config.num_attention_heads
|
155 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
156 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
157 |
+
self.image_patch_tokens = int((config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1)
|
158 |
+
if config.num_image_with_embedding is not None:
|
159 |
+
self.image_patch_tokens *= config.num_image_with_embedding
|
160 |
+
|
161 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
162 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
163 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
164 |
+
|
165 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
166 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
167 |
+
config, "position_embedding_type", "absolute"
|
168 |
+
)
|
169 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
170 |
+
self.max_position_embeddings = config.max_position_embeddings
|
171 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
172 |
+
|
173 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
174 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
175 |
+
x = x.view(new_x_shape)
|
176 |
+
return x.permute(0, 2, 1, 3)
|
177 |
+
|
178 |
+
def forward(
|
179 |
+
self,
|
180 |
+
hidden_states: torch.Tensor,
|
181 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
182 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
183 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
184 |
+
output_attentions: Optional[bool] = False,
|
185 |
+
pixel_values_present: Optional[bool] = False,
|
186 |
+
image_token_num: Optional[int] = None
|
187 |
+
) -> Tuple[torch.Tensor]:
|
188 |
+
mixed_query_layer = self.query(hidden_states)
|
189 |
+
if image_token_num is not None:
|
190 |
+
cutoff = image_token_num
|
191 |
+
else:
|
192 |
+
cutoff = self.image_patch_tokens if pixel_values_present else 0
|
193 |
+
if past_key_value is not None:
|
194 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
195 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
196 |
+
key_layer = torch.cat([key_layer[:, :, :cutoff, :], past_key_value[0], key_layer[:, :, -1:, :]], dim=2)
|
197 |
+
value_layer = torch.cat(
|
198 |
+
[value_layer[:, :, :cutoff, :], past_key_value[1], value_layer[:, :, -1:, :]], dim=2
|
199 |
+
)
|
200 |
+
else:
|
201 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
202 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
203 |
+
|
204 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
205 |
+
|
206 |
+
use_cache = past_key_value is not None
|
207 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
208 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
209 |
+
# key/value_states (first "if" case)
|
210 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
211 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
212 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
213 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
214 |
+
# NOTE: like in other caches, we store the text component. In GIT it means we discard the image component.
|
215 |
+
past_key_value = (
|
216 |
+
key_layer[:, :, cutoff:, :],
|
217 |
+
value_layer[:, :, cutoff:, :],
|
218 |
+
)
|
219 |
+
|
220 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
221 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
222 |
+
|
223 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
224 |
+
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
225 |
+
if use_cache:
|
226 |
+
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
227 |
+
-1, 1
|
228 |
+
)
|
229 |
+
else:
|
230 |
+
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
231 |
+
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
232 |
+
distance = position_ids_l - position_ids_r
|
233 |
+
|
234 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
235 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
236 |
+
|
237 |
+
if self.position_embedding_type == "relative_key":
|
238 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
239 |
+
attention_scores = attention_scores + relative_position_scores
|
240 |
+
elif self.position_embedding_type == "relative_key_query":
|
241 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
242 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
243 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
244 |
+
|
245 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
246 |
+
if attention_mask is not None:
|
247 |
+
# Apply the attention mask is (precomputed for all layers in GitModel forward() function)
|
248 |
+
attention_scores = attention_scores + attention_mask
|
249 |
+
|
250 |
+
# Normalize the attention scores to probabilities.
|
251 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
252 |
+
|
253 |
+
# This is actually dropping out entire tokens to attend to, which might
|
254 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
255 |
+
attention_probs = self.dropout(attention_probs)
|
256 |
+
|
257 |
+
# Mask heads if we want to
|
258 |
+
if head_mask is not None:
|
259 |
+
attention_probs = attention_probs * head_mask
|
260 |
+
|
261 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
262 |
+
|
263 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
264 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
265 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
266 |
+
|
267 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
268 |
+
|
269 |
+
outputs = outputs + (past_key_value,)
|
270 |
+
return outputs
|
271 |
+
|
272 |
+
|
273 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
274 |
+
class GitSelfOutput(nn.Module):
|
275 |
+
def __init__(self, config):
|
276 |
+
super().__init__()
|
277 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
278 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
279 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
280 |
+
|
281 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
282 |
+
hidden_states = self.dense(hidden_states)
|
283 |
+
hidden_states = self.dropout(hidden_states)
|
284 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
285 |
+
return hidden_states
|
286 |
+
|
287 |
+
|
288 |
+
class GitAttention(nn.Module):
|
289 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention.__init__ with Bert->Git
|
290 |
+
def __init__(self, config, position_embedding_type=None):
|
291 |
+
super().__init__()
|
292 |
+
self.self = GitSelfAttention(config, position_embedding_type=position_embedding_type)
|
293 |
+
self.output = GitSelfOutput(config)
|
294 |
+
self.pruned_heads = set()
|
295 |
+
|
296 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
|
297 |
+
def prune_heads(self, heads):
|
298 |
+
if len(heads) == 0:
|
299 |
+
return
|
300 |
+
heads, index = find_pruneable_heads_and_indices(
|
301 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
302 |
+
)
|
303 |
+
|
304 |
+
# Prune linear layers
|
305 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
306 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
307 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
308 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
309 |
+
|
310 |
+
# Update hyper params and store pruned heads
|
311 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
312 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
313 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
314 |
+
|
315 |
+
def forward(
|
316 |
+
self,
|
317 |
+
hidden_states: torch.Tensor,
|
318 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
319 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
320 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
321 |
+
output_attentions: Optional[bool] = False,
|
322 |
+
pixel_values_present: Optional[bool] = False,
|
323 |
+
image_token_num: Optional[int] = None
|
324 |
+
) -> Tuple[torch.Tensor]:
|
325 |
+
self_outputs = self.self(
|
326 |
+
hidden_states,
|
327 |
+
attention_mask,
|
328 |
+
head_mask,
|
329 |
+
past_key_value,
|
330 |
+
output_attentions,
|
331 |
+
pixel_values_present,
|
332 |
+
image_token_num
|
333 |
+
)
|
334 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
335 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
336 |
+
return outputs
|
337 |
+
|
338 |
+
|
339 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
340 |
+
class GitIntermediate(nn.Module):
|
341 |
+
def __init__(self, config):
|
342 |
+
super().__init__()
|
343 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
344 |
+
if isinstance(config.hidden_act, str):
|
345 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
346 |
+
else:
|
347 |
+
self.intermediate_act_fn = config.hidden_act
|
348 |
+
|
349 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
350 |
+
hidden_states = self.dense(hidden_states)
|
351 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
352 |
+
return hidden_states
|
353 |
+
|
354 |
+
|
355 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
356 |
+
class GitOutput(nn.Module):
|
357 |
+
def __init__(self, config):
|
358 |
+
super().__init__()
|
359 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
360 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
361 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
362 |
+
|
363 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
364 |
+
hidden_states = self.dense(hidden_states)
|
365 |
+
hidden_states = self.dropout(hidden_states)
|
366 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
367 |
+
return hidden_states
|
368 |
+
|
369 |
+
|
370 |
+
class GitLayer(nn.Module):
|
371 |
+
def __init__(self, config):
|
372 |
+
super().__init__()
|
373 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
374 |
+
self.seq_len_dim = 1
|
375 |
+
self.attention = GitAttention(config)
|
376 |
+
self.intermediate = GitIntermediate(config)
|
377 |
+
self.output = GitOutput(config)
|
378 |
+
|
379 |
+
def forward(
|
380 |
+
self,
|
381 |
+
hidden_states: torch.Tensor,
|
382 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
383 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
384 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
385 |
+
output_attentions: Optional[bool] = False,
|
386 |
+
pixel_values_present: Optional[bool] = False,
|
387 |
+
image_token_num: Optional[bool] = None,
|
388 |
+
) -> Tuple[torch.Tensor]:
|
389 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
390 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
391 |
+
self_attention_outputs = self.attention(
|
392 |
+
hidden_states,
|
393 |
+
attention_mask,
|
394 |
+
head_mask,
|
395 |
+
output_attentions=output_attentions,
|
396 |
+
past_key_value=self_attn_past_key_value,
|
397 |
+
pixel_values_present=pixel_values_present,
|
398 |
+
image_token_num=image_token_num
|
399 |
+
)
|
400 |
+
attention_output = self_attention_outputs[0]
|
401 |
+
|
402 |
+
# if decoder, the last output is tuple of self-attn cache
|
403 |
+
outputs = self_attention_outputs[1:-1]
|
404 |
+
present_key_value = self_attention_outputs[-1]
|
405 |
+
|
406 |
+
layer_output = apply_chunking_to_forward(
|
407 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
408 |
+
)
|
409 |
+
outputs = (layer_output,) + outputs
|
410 |
+
|
411 |
+
# if decoder, return the attn key/values as the last output
|
412 |
+
outputs = outputs + (present_key_value,)
|
413 |
+
|
414 |
+
return outputs
|
415 |
+
|
416 |
+
def feed_forward_chunk(self, attention_output):
|
417 |
+
intermediate_output = self.intermediate(attention_output)
|
418 |
+
layer_output = self.output(intermediate_output, attention_output)
|
419 |
+
return layer_output
|
420 |
+
|
421 |
+
|
422 |
+
class GitEncoder(nn.Module):
|
423 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Git
|
424 |
+
def __init__(self, config):
|
425 |
+
super().__init__()
|
426 |
+
self.config = config
|
427 |
+
self.layer = nn.ModuleList([GitLayer(config) for _ in range(config.num_hidden_layers)])
|
428 |
+
self.gradient_checkpointing = False
|
429 |
+
|
430 |
+
def forward(
|
431 |
+
self,
|
432 |
+
hidden_states: torch.Tensor,
|
433 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
434 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
435 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
436 |
+
use_cache: Optional[bool] = None,
|
437 |
+
output_attentions: Optional[bool] = False,
|
438 |
+
output_hidden_states: Optional[bool] = False,
|
439 |
+
pixel_values_present: Optional[bool] = False,
|
440 |
+
image_token_num: Optional[int] = None,
|
441 |
+
return_dict: Optional[bool] = True,
|
442 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
|
443 |
+
if self.gradient_checkpointing and self.training:
|
444 |
+
if use_cache:
|
445 |
+
logger.warning_once(
|
446 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
447 |
+
)
|
448 |
+
use_cache = False
|
449 |
+
|
450 |
+
all_hidden_states = () if output_hidden_states else None
|
451 |
+
all_self_attentions = () if output_attentions else None
|
452 |
+
|
453 |
+
next_decoder_cache = () if use_cache else None
|
454 |
+
for i, layer_module in enumerate(self.layer):
|
455 |
+
if output_hidden_states:
|
456 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
457 |
+
|
458 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
459 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
460 |
+
|
461 |
+
if self.gradient_checkpointing and self.training:
|
462 |
+
|
463 |
+
def create_custom_forward(module):
|
464 |
+
def custom_forward(*inputs):
|
465 |
+
return module(*inputs, past_key_value, output_attentions)
|
466 |
+
|
467 |
+
return custom_forward
|
468 |
+
|
469 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
470 |
+
create_custom_forward(layer_module),
|
471 |
+
hidden_states,
|
472 |
+
attention_mask,
|
473 |
+
layer_head_mask,
|
474 |
+
)
|
475 |
+
else:
|
476 |
+
layer_outputs = layer_module(
|
477 |
+
hidden_states,
|
478 |
+
attention_mask,
|
479 |
+
layer_head_mask,
|
480 |
+
past_key_value,
|
481 |
+
output_attentions,
|
482 |
+
pixel_values_present,
|
483 |
+
image_token_num,
|
484 |
+
|
485 |
+
)
|
486 |
+
|
487 |
+
hidden_states = layer_outputs[0]
|
488 |
+
if use_cache:
|
489 |
+
next_decoder_cache += (layer_outputs[-1],)
|
490 |
+
if output_attentions:
|
491 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
492 |
+
|
493 |
+
if output_hidden_states:
|
494 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
495 |
+
|
496 |
+
if not return_dict:
|
497 |
+
return tuple(
|
498 |
+
v
|
499 |
+
for v in [
|
500 |
+
hidden_states,
|
501 |
+
next_decoder_cache,
|
502 |
+
all_hidden_states,
|
503 |
+
all_self_attentions,
|
504 |
+
]
|
505 |
+
if v is not None
|
506 |
+
)
|
507 |
+
return BaseModelOutputWithPast(
|
508 |
+
last_hidden_state=hidden_states,
|
509 |
+
past_key_values=next_decoder_cache,
|
510 |
+
hidden_states=all_hidden_states,
|
511 |
+
attentions=all_self_attentions,
|
512 |
+
)
|
513 |
+
|
514 |
+
|
515 |
+
class GitPreTrainedModel(PreTrainedModel):
|
516 |
+
"""
|
517 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
518 |
+
models.
|
519 |
+
"""
|
520 |
+
|
521 |
+
config_class = GitConfig
|
522 |
+
base_model_prefix = "git"
|
523 |
+
supports_gradient_checkpointing = True
|
524 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
525 |
+
|
526 |
+
def _init_weights(self, module):
|
527 |
+
"""Initialize the weights"""
|
528 |
+
if isinstance(module, GitVisionEmbeddings):
|
529 |
+
nn.init.normal_(module.class_embedding, mean=0.0, std=self.config.initializer_range)
|
530 |
+
nn.init.normal_(module.patch_embedding.weight, std=self.config.initializer_range)
|
531 |
+
nn.init.normal_(module.position_embedding.weight, std=self.config.initializer_range)
|
532 |
+
if isinstance(module, nn.Linear):
|
533 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
534 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
535 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
536 |
+
if module.bias is not None:
|
537 |
+
module.bias.data.zero_()
|
538 |
+
elif isinstance(module, nn.Embedding):
|
539 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
540 |
+
if module.padding_idx is not None:
|
541 |
+
module.weight.data[module.padding_idx].zero_()
|
542 |
+
elif isinstance(module, nn.LayerNorm):
|
543 |
+
module.bias.data.zero_()
|
544 |
+
module.weight.data.fill_(1.0)
|
545 |
+
|
546 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
547 |
+
if isinstance(module, (GitEncoder, GitVisionEncoder)):
|
548 |
+
module.gradient_checkpointing = value
|
549 |
+
|
550 |
+
|
551 |
+
GIT_START_DOCSTRING = r"""
|
552 |
+
|
553 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
554 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
555 |
+
etc.)
|
556 |
+
|
557 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
558 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
559 |
+
and behavior.
|
560 |
+
|
561 |
+
Parameters:
|
562 |
+
config ([`GitConfig`]): Model configuration class with all the parameters of the model.
|
563 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
564 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
565 |
+
"""
|
566 |
+
|
567 |
+
GIT_INPUTS_DOCSTRING = r"""
|
568 |
+
Args:
|
569 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
570 |
+
Indices of input sequence tokens in the vocabulary.
|
571 |
+
|
572 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
573 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
574 |
+
|
575 |
+
[What are input IDs?](../glossary#input-ids)
|
576 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
577 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
578 |
+
|
579 |
+
- 1 for tokens that are **not masked**,
|
580 |
+
- 0 for tokens that are **masked**.
|
581 |
+
|
582 |
+
[What are attention masks?](../glossary#attention-mask)
|
583 |
+
|
584 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
585 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
586 |
+
config.max_position_embeddings - 1]`.
|
587 |
+
|
588 |
+
[What are position IDs?](../glossary#position-ids)
|
589 |
+
|
590 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
591 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
592 |
+
[`CLIPImageProcessor.__call__`] for details.
|
593 |
+
|
594 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
595 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
596 |
+
|
597 |
+
- 1 indicates the head is **not masked**,
|
598 |
+
- 0 indicates the head is **masked**.
|
599 |
+
|
600 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
601 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
602 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
603 |
+
model's internal embedding lookup matrix.
|
604 |
+
output_attentions (`bool`, *optional*):
|
605 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
606 |
+
tensors for more detail.
|
607 |
+
output_hidden_states (`bool`, *optional*):
|
608 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
609 |
+
more detail.
|
610 |
+
return_dict (`bool`, *optional*):
|
611 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
612 |
+
"""
|
613 |
+
|
614 |
+
|
615 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Git
|
616 |
+
class GitVisionEmbeddings(nn.Module):
|
617 |
+
def __init__(self, config: GitVisionConfig):
|
618 |
+
super().__init__()
|
619 |
+
self.config = config
|
620 |
+
self.embed_dim = config.hidden_size
|
621 |
+
self.image_size = config.image_size
|
622 |
+
self.patch_size = config.patch_size
|
623 |
+
|
624 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
625 |
+
|
626 |
+
self.patch_embedding = nn.Conv2d(
|
627 |
+
in_channels=config.num_channels,
|
628 |
+
out_channels=self.embed_dim,
|
629 |
+
kernel_size=self.patch_size,
|
630 |
+
stride=self.patch_size,
|
631 |
+
bias=False,
|
632 |
+
)
|
633 |
+
|
634 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
635 |
+
self.num_positions = self.num_patches + 1
|
636 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
637 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
|
638 |
+
|
639 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
640 |
+
batch_size = pixel_values.shape[0]
|
641 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
642 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
643 |
+
|
644 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
645 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
646 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
647 |
+
return embeddings
|
648 |
+
|
649 |
+
|
650 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP
|
651 |
+
class GitVisionMLP(nn.Module):
|
652 |
+
def __init__(self, config):
|
653 |
+
super().__init__()
|
654 |
+
self.config = config
|
655 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
656 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
657 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
658 |
+
|
659 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
660 |
+
hidden_states = self.fc1(hidden_states)
|
661 |
+
hidden_states = self.activation_fn(hidden_states)
|
662 |
+
hidden_states = self.fc2(hidden_states)
|
663 |
+
return hidden_states
|
664 |
+
|
665 |
+
|
666 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention
|
667 |
+
class GitVisionAttention(nn.Module):
|
668 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
669 |
+
|
670 |
+
def __init__(self, config):
|
671 |
+
super().__init__()
|
672 |
+
self.config = config
|
673 |
+
self.embed_dim = config.hidden_size
|
674 |
+
self.num_heads = config.num_attention_heads
|
675 |
+
self.head_dim = self.embed_dim // self.num_heads
|
676 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
677 |
+
raise ValueError(
|
678 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
679 |
+
f" {self.num_heads})."
|
680 |
+
)
|
681 |
+
self.scale = self.head_dim**-0.5
|
682 |
+
self.dropout = config.attention_dropout
|
683 |
+
|
684 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
685 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
686 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
687 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
688 |
+
|
689 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
690 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
691 |
+
|
692 |
+
def forward(
|
693 |
+
self,
|
694 |
+
hidden_states: torch.Tensor,
|
695 |
+
attention_mask: Optional[torch.Tensor] = None,
|
696 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
697 |
+
output_attentions: Optional[bool] = False,
|
698 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
699 |
+
"""Input shape: Batch x Time x Channel"""
|
700 |
+
|
701 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
702 |
+
|
703 |
+
# get query proj
|
704 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
705 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
706 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
707 |
+
|
708 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
709 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
710 |
+
key_states = key_states.view(*proj_shape)
|
711 |
+
value_states = value_states.view(*proj_shape)
|
712 |
+
|
713 |
+
src_len = key_states.size(1)
|
714 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
715 |
+
|
716 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
717 |
+
raise ValueError(
|
718 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
719 |
+
f" {attn_weights.size()}"
|
720 |
+
)
|
721 |
+
|
722 |
+
# apply the causal_attention_mask first
|
723 |
+
if causal_attention_mask is not None:
|
724 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
725 |
+
raise ValueError(
|
726 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
727 |
+
f" {causal_attention_mask.size()}"
|
728 |
+
)
|
729 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
730 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
731 |
+
|
732 |
+
if attention_mask is not None:
|
733 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
734 |
+
raise ValueError(
|
735 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
736 |
+
)
|
737 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
738 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
739 |
+
|
740 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
741 |
+
|
742 |
+
if output_attentions:
|
743 |
+
# this operation is a bit akward, but it's required to
|
744 |
+
# make sure that attn_weights keeps its gradient.
|
745 |
+
# In order to do so, attn_weights have to reshaped
|
746 |
+
# twice and have to be reused in the following
|
747 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
748 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
749 |
+
else:
|
750 |
+
attn_weights_reshaped = None
|
751 |
+
|
752 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
753 |
+
|
754 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
755 |
+
|
756 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
757 |
+
raise ValueError(
|
758 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
759 |
+
f" {attn_output.size()}"
|
760 |
+
)
|
761 |
+
|
762 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
763 |
+
attn_output = attn_output.transpose(1, 2)
|
764 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
765 |
+
|
766 |
+
attn_output = self.out_proj(attn_output)
|
767 |
+
|
768 |
+
return attn_output, attn_weights_reshaped
|
769 |
+
|
770 |
+
|
771 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->GitVision
|
772 |
+
class GitVisionEncoderLayer(nn.Module):
|
773 |
+
def __init__(self, config: GitVisionConfig):
|
774 |
+
super().__init__()
|
775 |
+
self.embed_dim = config.hidden_size
|
776 |
+
self.self_attn = GitVisionAttention(config)
|
777 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
778 |
+
self.mlp = GitVisionMLP(config)
|
779 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
780 |
+
|
781 |
+
def forward(
|
782 |
+
self,
|
783 |
+
hidden_states: torch.Tensor,
|
784 |
+
attention_mask: torch.Tensor,
|
785 |
+
causal_attention_mask: torch.Tensor,
|
786 |
+
output_attentions: Optional[bool] = False,
|
787 |
+
) -> Tuple[torch.FloatTensor]:
|
788 |
+
"""
|
789 |
+
Args:
|
790 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
791 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
792 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
793 |
+
`(config.encoder_attention_heads,)`.
|
794 |
+
output_attentions (`bool`, *optional*):
|
795 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
796 |
+
returned tensors for more detail.
|
797 |
+
"""
|
798 |
+
residual = hidden_states
|
799 |
+
|
800 |
+
hidden_states = self.layer_norm1(hidden_states)
|
801 |
+
hidden_states, attn_weights = self.self_attn(
|
802 |
+
hidden_states=hidden_states,
|
803 |
+
attention_mask=attention_mask,
|
804 |
+
causal_attention_mask=causal_attention_mask,
|
805 |
+
output_attentions=output_attentions,
|
806 |
+
)
|
807 |
+
hidden_states = residual + hidden_states
|
808 |
+
|
809 |
+
residual = hidden_states
|
810 |
+
hidden_states = self.layer_norm2(hidden_states)
|
811 |
+
hidden_states = self.mlp(hidden_states)
|
812 |
+
hidden_states = residual + hidden_states
|
813 |
+
|
814 |
+
outputs = (hidden_states,)
|
815 |
+
|
816 |
+
if output_attentions:
|
817 |
+
outputs += (attn_weights,)
|
818 |
+
|
819 |
+
return outputs
|
820 |
+
|
821 |
+
|
822 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->GitVision, CLIPConfig
|
823 |
+
class GitVisionEncoder(nn.Module):
|
824 |
+
"""
|
825 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
826 |
+
[`GitVisionEncoderLayer`].
|
827 |
+
|
828 |
+
Args:
|
829 |
+
config: GitVisionConfig
|
830 |
+
"""
|
831 |
+
|
832 |
+
def __init__(self, config: GitVisionConfig):
|
833 |
+
super().__init__()
|
834 |
+
self.config = config
|
835 |
+
self.layers = nn.ModuleList([GitVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
836 |
+
self.gradient_checkpointing = False
|
837 |
+
|
838 |
+
def forward(
|
839 |
+
self,
|
840 |
+
inputs_embeds,
|
841 |
+
attention_mask: Optional[torch.Tensor] = None,
|
842 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
843 |
+
output_attentions: Optional[bool] = None,
|
844 |
+
output_hidden_states: Optional[bool] = None,
|
845 |
+
return_dict: Optional[bool] = None,
|
846 |
+
) -> Union[Tuple, BaseModelOutput]:
|
847 |
+
r"""
|
848 |
+
Args:
|
849 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
850 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
851 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
852 |
+
than the model's internal embedding lookup matrix.
|
853 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
854 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
855 |
+
|
856 |
+
- 1 for tokens that are **not masked**,
|
857 |
+
- 0 for tokens that are **masked**.
|
858 |
+
|
859 |
+
[What are attention masks?](../glossary#attention-mask)
|
860 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
861 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
862 |
+
|
863 |
+
- 1 for tokens that are **not masked**,
|
864 |
+
- 0 for tokens that are **masked**.
|
865 |
+
|
866 |
+
[What are attention masks?](../glossary#attention-mask)
|
867 |
+
output_attentions (`bool`, *optional*):
|
868 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
869 |
+
returned tensors for more detail.
|
870 |
+
output_hidden_states (`bool`, *optional*):
|
871 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
872 |
+
for more detail.
|
873 |
+
return_dict (`bool`, *optional*):
|
874 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
875 |
+
"""
|
876 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
877 |
+
output_hidden_states = (
|
878 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
879 |
+
)
|
880 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
881 |
+
|
882 |
+
encoder_states = () if output_hidden_states else None
|
883 |
+
all_attentions = () if output_attentions else None
|
884 |
+
|
885 |
+
hidden_states = inputs_embeds
|
886 |
+
for idx, encoder_layer in enumerate(self.layers):
|
887 |
+
if output_hidden_states:
|
888 |
+
encoder_states = encoder_states + (hidden_states,)
|
889 |
+
if self.gradient_checkpointing and self.training:
|
890 |
+
|
891 |
+
def create_custom_forward(module):
|
892 |
+
def custom_forward(*inputs):
|
893 |
+
return module(*inputs, output_attentions)
|
894 |
+
|
895 |
+
return custom_forward
|
896 |
+
|
897 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
898 |
+
create_custom_forward(encoder_layer),
|
899 |
+
hidden_states,
|
900 |
+
attention_mask,
|
901 |
+
causal_attention_mask,
|
902 |
+
)
|
903 |
+
else:
|
904 |
+
layer_outputs = encoder_layer(
|
905 |
+
hidden_states,
|
906 |
+
attention_mask,
|
907 |
+
causal_attention_mask,
|
908 |
+
output_attentions=output_attentions,
|
909 |
+
)
|
910 |
+
|
911 |
+
hidden_states = layer_outputs[0]
|
912 |
+
|
913 |
+
if output_attentions:
|
914 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
915 |
+
|
916 |
+
if output_hidden_states:
|
917 |
+
encoder_states = encoder_states + (hidden_states,)
|
918 |
+
|
919 |
+
if not return_dict:
|
920 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
921 |
+
return BaseModelOutput(
|
922 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
923 |
+
)
|
924 |
+
|
925 |
+
|
926 |
+
GIT_VISION_INPUTS_DOCSTRING = r"""
|
927 |
+
Args:
|
928 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
929 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
930 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
931 |
+
output_attentions (`bool`, *optional*):
|
932 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
933 |
+
tensors for more detail.
|
934 |
+
output_hidden_states (`bool`, *optional*):
|
935 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
936 |
+
more detail.
|
937 |
+
return_dict (`bool`, *optional*):
|
938 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
939 |
+
"""
|
940 |
+
|
941 |
+
|
942 |
+
class GitVisionTransformer(nn.Module):
|
943 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIPEncoder->GitVisionEncoder, CLIP->Git
|
944 |
+
def __init__(self, config: GitVisionConfig):
|
945 |
+
super().__init__()
|
946 |
+
self.config = config
|
947 |
+
embed_dim = config.hidden_size
|
948 |
+
|
949 |
+
self.embeddings = GitVisionEmbeddings(config)
|
950 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
951 |
+
self.patch_mask_generator = ViTPatchMaskGenerator(config.patch_size)
|
952 |
+
self.encoder = GitVisionEncoder(config)
|
953 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
954 |
+
|
955 |
+
@add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING)
|
956 |
+
@replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig)
|
957 |
+
def forward(
|
958 |
+
self,
|
959 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
960 |
+
pixel_masks: Optional[torch.Tensor] = None,
|
961 |
+
output_attentions: Optional[bool] = None,
|
962 |
+
output_hidden_states: Optional[bool] = None,
|
963 |
+
return_dict: Optional[bool] = None,
|
964 |
+
) -> Union[Tuple, BaseModelOutput]:
|
965 |
+
r"""
|
966 |
+
Returns:
|
967 |
+
|
968 |
+
"""
|
969 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
970 |
+
output_hidden_states = (
|
971 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
972 |
+
)
|
973 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
974 |
+
|
975 |
+
if pixel_values is None:
|
976 |
+
raise ValueError("You have to specify pixel_values")
|
977 |
+
|
978 |
+
hidden_states = self.embeddings(pixel_values)
|
979 |
+
B, N, D = hidden_states.shape
|
980 |
+
# print('Before mask:', hidden_states.shape)
|
981 |
+
if pixel_masks is not None:
|
982 |
+
assert pixel_masks.shape[0] == 1
|
983 |
+
patch_masks = self.patch_mask_generator(pixel_masks)
|
984 |
+
# print(patch_masks.shape)
|
985 |
+
patch_masks = patch_masks.unsqueeze(-1).expand_as(hidden_states)
|
986 |
+
hidden_states = hidden_states.masked_select(patch_masks).view(B, -1, D)
|
987 |
+
# print('After mask:', hidden_states.shape)
|
988 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
989 |
+
|
990 |
+
encoder_outputs = self.encoder(
|
991 |
+
inputs_embeds=hidden_states,
|
992 |
+
output_attentions=output_attentions,
|
993 |
+
output_hidden_states=output_hidden_states,
|
994 |
+
return_dict=return_dict,
|
995 |
+
)
|
996 |
+
|
997 |
+
last_hidden_state = encoder_outputs[0]
|
998 |
+
|
999 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
1000 |
+
|
1001 |
+
if not return_dict:
|
1002 |
+
return (last_hidden_state,) + encoder_outputs[1:]
|
1003 |
+
|
1004 |
+
return BaseModelOutput(
|
1005 |
+
last_hidden_state=last_hidden_state,
|
1006 |
+
hidden_states=encoder_outputs.hidden_states,
|
1007 |
+
attentions=encoder_outputs.attentions,
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
|
1011 |
+
@add_start_docstrings(
|
1012 |
+
"""The vision model from CLIP, used in GIT, without any head or projection on top.""",
|
1013 |
+
GIT_START_DOCSTRING,
|
1014 |
+
)
|
1015 |
+
class GitVisionModel(GitPreTrainedModel):
|
1016 |
+
config_class = GitVisionConfig
|
1017 |
+
main_input_name = "pixel_values"
|
1018 |
+
|
1019 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP->Git
|
1020 |
+
def __init__(self, config: GitVisionConfig):
|
1021 |
+
super().__init__(config)
|
1022 |
+
self.vision_model = GitVisionTransformer(config)
|
1023 |
+
# Initialize weights and apply final processing
|
1024 |
+
self.post_init()
|
1025 |
+
|
1026 |
+
def get_input_embeddings(self) -> nn.Module:
|
1027 |
+
return self.vision_model.embeddings.patch_embedding
|
1028 |
+
|
1029 |
+
@add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING)
|
1030 |
+
@replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig)
|
1031 |
+
def forward(
|
1032 |
+
self,
|
1033 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1034 |
+
pixel_masks: Optional[torch.Tensor] = None,
|
1035 |
+
output_attentions: Optional[bool] = None,
|
1036 |
+
output_hidden_states: Optional[bool] = None,
|
1037 |
+
return_dict: Optional[bool] = None,
|
1038 |
+
) -> Union[Tuple, BaseModelOutput]:
|
1039 |
+
r"""
|
1040 |
+
Returns:
|
1041 |
+
|
1042 |
+
Examples:
|
1043 |
+
|
1044 |
+
```python
|
1045 |
+
>>> from PIL import Image
|
1046 |
+
>>> import requests
|
1047 |
+
>>> from transformers import AutoProcessor, GitVisionModel
|
1048 |
+
|
1049 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
|
1050 |
+
>>> model = GitVisionModel.from_pretrained("microsoft/git-base")
|
1051 |
+
|
1052 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1053 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1054 |
+
|
1055 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1056 |
+
|
1057 |
+
>>> outputs = model(**inputs)
|
1058 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1059 |
+
```"""
|
1060 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1061 |
+
|
1062 |
+
return self.vision_model(
|
1063 |
+
pixel_values=pixel_values,
|
1064 |
+
pixel_masks=pixel_masks,
|
1065 |
+
output_attentions=output_attentions,
|
1066 |
+
output_hidden_states=output_hidden_states,
|
1067 |
+
return_dict=return_dict,
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
|
1071 |
+
class GitProjection(nn.Module):
|
1072 |
+
def __init__(self, config: GitConfig):
|
1073 |
+
super().__init__()
|
1074 |
+
self.config = config
|
1075 |
+
self.visual_projection = nn.Sequential(
|
1076 |
+
nn.Linear(config.vision_config.hidden_size, config.hidden_size),
|
1077 |
+
nn.LayerNorm(config.hidden_size, eps=config.vision_config.layer_norm_eps),
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
def forward(self, embeddings: torch.Tensor) -> torch.Tensor:
|
1081 |
+
return self.visual_projection(embeddings)
|
1082 |
+
|
1083 |
+
|
1084 |
+
@add_start_docstrings(
|
1085 |
+
"The bare GIT Model transformer consisting of a CLIP image encoder and text decoder outputting raw hidden-states"
|
1086 |
+
" without any specific head on top.",
|
1087 |
+
GIT_START_DOCSTRING,
|
1088 |
+
)
|
1089 |
+
class GitModel(GitPreTrainedModel):
|
1090 |
+
def __init__(self, config):
|
1091 |
+
super().__init__(config)
|
1092 |
+
self.config = config
|
1093 |
+
|
1094 |
+
self.embeddings = GitEmbeddings(config)
|
1095 |
+
self.image_encoder = GitVisionModel(config.vision_config)
|
1096 |
+
self.encoder = GitEncoder(config)
|
1097 |
+
|
1098 |
+
self.visual_projection = GitProjection(config)
|
1099 |
+
|
1100 |
+
if config.num_image_with_embedding is not None:
|
1101 |
+
self.img_temperal_embedding = nn.ParameterList(
|
1102 |
+
nn.Parameter(torch.zeros(1, 1, config.vision_config.hidden_size))
|
1103 |
+
for _ in range(config.num_image_with_embedding)
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
# Initialize weights and apply final processing
|
1107 |
+
self.post_init()
|
1108 |
+
|
1109 |
+
def get_input_embeddings(self):
|
1110 |
+
return self.embeddings.word_embeddings
|
1111 |
+
|
1112 |
+
def set_input_embeddings(self, value):
|
1113 |
+
self.embeddings.word_embeddings = value
|
1114 |
+
|
1115 |
+
def _prune_heads(self, heads_to_prune):
|
1116 |
+
"""
|
1117 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1118 |
+
class PreTrainedModel
|
1119 |
+
"""
|
1120 |
+
for layer, heads in heads_to_prune.items():
|
1121 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1122 |
+
|
1123 |
+
def _generate_future_mask(self, size: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
|
1124 |
+
# Default mask is for forward direction. Flip for backward direction.
|
1125 |
+
mask = torch.triu(torch.ones(size, size, device=device, dtype=dtype), diagonal=1)
|
1126 |
+
mask = mask.masked_fill(mask == 1, float("-inf"))
|
1127 |
+
return mask
|
1128 |
+
|
1129 |
+
def create_attention_mask(self, tgt, memory, tgt_mask, past_key_values_length, memory_key_padding_mask=None):
|
1130 |
+
num_tgt = tgt.shape[1]
|
1131 |
+
num_memory = memory.shape[1]
|
1132 |
+
device = tgt.device
|
1133 |
+
dtype = tgt.dtype
|
1134 |
+
top_left = torch.zeros((num_memory, num_memory), device=device, dtype=dtype)
|
1135 |
+
top_right = torch.full(
|
1136 |
+
(num_memory, num_tgt + past_key_values_length),
|
1137 |
+
float("-inf"),
|
1138 |
+
device=tgt.device,
|
1139 |
+
dtype=dtype,
|
1140 |
+
)
|
1141 |
+
bottom_left = torch.zeros(
|
1142 |
+
(num_tgt, num_memory),
|
1143 |
+
dtype=dtype,
|
1144 |
+
device=tgt_mask.device,
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
if past_key_values_length > 0:
|
1148 |
+
tgt_mask = torch.zeros(
|
1149 |
+
(tgt_mask.shape[0], tgt_mask.shape[0] + past_key_values_length),
|
1150 |
+
dtype=dtype,
|
1151 |
+
device=tgt_mask.device,
|
1152 |
+
)
|
1153 |
+
|
1154 |
+
left = torch.cat((top_left, bottom_left), dim=0)
|
1155 |
+
right = torch.cat((top_right, tgt_mask.to(dtype)), dim=0)
|
1156 |
+
|
1157 |
+
full_attention_mask = torch.cat((left, right), dim=1)[None, :]
|
1158 |
+
|
1159 |
+
if memory_key_padding_mask is None:
|
1160 |
+
memory_key_padding_mask = torch.full((memory.shape[0], memory.shape[1]), fill_value=False, device=device)
|
1161 |
+
# if it is False, it means valid. That is, it is not a padding
|
1162 |
+
if memory_key_padding_mask.dtype != torch.bool:
|
1163 |
+
raise ValueError("Memory key padding mask must be a boolean tensor.")
|
1164 |
+
zero_negative_infinity = torch.zeros_like(memory_key_padding_mask, dtype=tgt.dtype)
|
1165 |
+
zero_negative_infinity[memory_key_padding_mask] = float("-inf")
|
1166 |
+
full_attention_mask = full_attention_mask.expand(
|
1167 |
+
(memory_key_padding_mask.shape[0], num_memory + num_tgt, num_memory + past_key_values_length + num_tgt)
|
1168 |
+
)
|
1169 |
+
full_attention_mask = full_attention_mask.clone()
|
1170 |
+
origin_left = full_attention_mask[:, :, :num_memory]
|
1171 |
+
update = zero_negative_infinity[:, None, :]
|
1172 |
+
full_attention_mask[:, :, :num_memory] = origin_left + update
|
1173 |
+
|
1174 |
+
# add axis for multi-head
|
1175 |
+
full_attention_mask = full_attention_mask[:, None, :, :]
|
1176 |
+
|
1177 |
+
return full_attention_mask
|
1178 |
+
|
1179 |
+
@add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1180 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
|
1181 |
+
def forward(
|
1182 |
+
self,
|
1183 |
+
input_ids: Optional[torch.Tensor] = None,
|
1184 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1185 |
+
position_ids: Optional[torch.Tensor] = None,
|
1186 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1187 |
+
pixel_masks: Optional[torch.Tensor] = None,
|
1188 |
+
head_mask: Optional[torch.Tensor] = None,
|
1189 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1190 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1191 |
+
use_cache: Optional[bool] = None,
|
1192 |
+
output_attentions: Optional[bool] = None,
|
1193 |
+
output_hidden_states: Optional[bool] = None,
|
1194 |
+
return_dict: Optional[bool] = None,
|
1195 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
|
1196 |
+
r"""
|
1197 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1198 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1199 |
+
|
1200 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1201 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1202 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1203 |
+
use_cache (`bool`, *optional*):
|
1204 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1205 |
+
`past_key_values`).
|
1206 |
+
|
1207 |
+
Returns:
|
1208 |
+
|
1209 |
+
Examples:
|
1210 |
+
|
1211 |
+
```python
|
1212 |
+
>>> from transformers import AutoProcessor, AutoModel
|
1213 |
+
>>> import requests
|
1214 |
+
>>> from PIL import Image
|
1215 |
+
|
1216 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
|
1217 |
+
>>> model = AutoModel.from_pretrained("microsoft/git-base")
|
1218 |
+
|
1219 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1220 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1221 |
+
|
1222 |
+
>>> text = "this is an image of two cats"
|
1223 |
+
|
1224 |
+
>>> inputs = processor(text, images=image, return_tensors="pt")
|
1225 |
+
|
1226 |
+
>>> outputs = model(**inputs)
|
1227 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1228 |
+
```"""
|
1229 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1230 |
+
output_hidden_states = (
|
1231 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1232 |
+
)
|
1233 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1234 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1235 |
+
|
1236 |
+
if input_ids is not None and inputs_embeds is not None:
|
1237 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1238 |
+
elif input_ids is not None:
|
1239 |
+
input_shape = input_ids.size()
|
1240 |
+
elif inputs_embeds is not None:
|
1241 |
+
input_shape = inputs_embeds.size()[:-1]
|
1242 |
+
else:
|
1243 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1244 |
+
|
1245 |
+
seq_length = input_shape[1]
|
1246 |
+
|
1247 |
+
# past_key_values_length
|
1248 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1249 |
+
|
1250 |
+
# Prepare head mask if needed
|
1251 |
+
# 1.0 in head_mask indicate we keep the head
|
1252 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1253 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1254 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1255 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1256 |
+
|
1257 |
+
projected_visual_features = None
|
1258 |
+
if pixel_values is not None:
|
1259 |
+
if pixel_values.ndim == 4:
|
1260 |
+
# here we assume pixel_values is of shape (batch_size, num_channels, height, width)
|
1261 |
+
visual_features = self.image_encoder(pixel_values=pixel_values, pixel_masks=pixel_masks).last_hidden_state
|
1262 |
+
|
1263 |
+
elif pixel_values.ndim == 5:
|
1264 |
+
# here we assume pixel_values is of shape (batch_size, num_frames, num_channels, height, width)
|
1265 |
+
visual_features = []
|
1266 |
+
for frame_idx in range(pixel_values.shape[1]):
|
1267 |
+
visual_features_frame = self.image_encoder(pixel_values[:, frame_idx, :, :]).last_hidden_state
|
1268 |
+
visual_features_frame += self.img_temperal_embedding[frame_idx]
|
1269 |
+
visual_features.append(visual_features_frame)
|
1270 |
+
|
1271 |
+
# finally, concatenate all features along sequence dimension
|
1272 |
+
visual_features = torch.cat(visual_features, dim=1)
|
1273 |
+
|
1274 |
+
else:
|
1275 |
+
raise ValueError("pixel_values must be of rank 4 or 5")
|
1276 |
+
|
1277 |
+
projected_visual_features = self.visual_projection(visual_features)
|
1278 |
+
image_token_num = projected_visual_features.shape[1]
|
1279 |
+
embedding_output = self.embeddings(
|
1280 |
+
input_ids=input_ids,
|
1281 |
+
position_ids=position_ids,
|
1282 |
+
inputs_embeds=inputs_embeds,
|
1283 |
+
past_key_values_length=past_key_values_length,
|
1284 |
+
)
|
1285 |
+
|
1286 |
+
if projected_visual_features is None:
|
1287 |
+
projected_visual_features = torch.zeros(
|
1288 |
+
(embedding_output.shape[0], 0, embedding_output.shape[2]),
|
1289 |
+
dtype=embedding_output.dtype,
|
1290 |
+
device=embedding_output.device,
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
# Repeat visual features to match embedding batch size.
|
1294 |
+
projected_visual_features = projected_visual_features.repeat(
|
1295 |
+
embedding_output.size(0) // projected_visual_features.size(0), 1, 1
|
1296 |
+
)
|
1297 |
+
|
1298 |
+
# concatenate patch token and text token embeddings
|
1299 |
+
hidden_states = torch.cat((projected_visual_features, embedding_output), dim=1)
|
1300 |
+
|
1301 |
+
# By default, an additive causal mask is created
|
1302 |
+
# for masking the future (one direction).
|
1303 |
+
tgt_mask = self._generate_future_mask(seq_length, embedding_output.dtype, embedding_output.device)
|
1304 |
+
|
1305 |
+
# Create an attention mask of shape (batch_size, 1, tgt_seq_len, src_seq_len)
|
1306 |
+
combined_attention_mask = self.create_attention_mask(
|
1307 |
+
tgt=embedding_output,
|
1308 |
+
memory=projected_visual_features,
|
1309 |
+
tgt_mask=tgt_mask,
|
1310 |
+
past_key_values_length=past_key_values_length,
|
1311 |
+
)
|
1312 |
+
|
1313 |
+
if attention_mask is not None:
|
1314 |
+
# if the user provides an attention mask, we add it to the default one
|
1315 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1316 |
+
expanded_attn_mask = _expand_mask(attention_mask, embedding_output.dtype, tgt_len=input_shape[-1]).to(
|
1317 |
+
embedding_output.device
|
1318 |
+
)
|
1319 |
+
if past_key_values_length > 0:
|
1320 |
+
expanded_attn_mask = expanded_attn_mask[:, :, -past_key_values_length:, :]
|
1321 |
+
else:
|
1322 |
+
combined_attention_mask[:, :, -input_shape[1] :, -input_shape[1] :] += expanded_attn_mask
|
1323 |
+
|
1324 |
+
encoder_outputs = self.encoder(
|
1325 |
+
hidden_states,
|
1326 |
+
attention_mask=combined_attention_mask,
|
1327 |
+
head_mask=head_mask,
|
1328 |
+
past_key_values=past_key_values,
|
1329 |
+
use_cache=use_cache,
|
1330 |
+
output_attentions=output_attentions,
|
1331 |
+
output_hidden_states=output_hidden_states,
|
1332 |
+
return_dict=return_dict,
|
1333 |
+
pixel_values_present=pixel_values is not None,
|
1334 |
+
image_token_num=image_token_num
|
1335 |
+
)
|
1336 |
+
sequence_output = encoder_outputs[0]
|
1337 |
+
|
1338 |
+
if not return_dict:
|
1339 |
+
return (sequence_output,) + encoder_outputs[1:]
|
1340 |
+
|
1341 |
+
return BaseModelOutputWithPast(
|
1342 |
+
last_hidden_state=sequence_output,
|
1343 |
+
past_key_values=encoder_outputs.past_key_values,
|
1344 |
+
hidden_states=encoder_outputs.hidden_states,
|
1345 |
+
attentions=encoder_outputs.attentions,
|
1346 |
+
)
|
1347 |
+
|
1348 |
+
|
1349 |
+
@add_start_docstrings(
|
1350 |
+
"""GIT Model with a `language modeling` head on top for autoregressive language modeling.""", GIT_START_DOCSTRING
|
1351 |
+
)
|
1352 |
+
class GitForCausalLM(GitPreTrainedModel):
|
1353 |
+
def __init__(self, config):
|
1354 |
+
super().__init__(config)
|
1355 |
+
|
1356 |
+
self.git = GitModel(config)
|
1357 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size)
|
1358 |
+
|
1359 |
+
# Initialize weights and apply final processing
|
1360 |
+
self.post_init()
|
1361 |
+
|
1362 |
+
def get_output_embeddings(self):
|
1363 |
+
return self.output
|
1364 |
+
|
1365 |
+
def set_output_embeddings(self, new_embeddings):
|
1366 |
+
self.output = new_embeddings
|
1367 |
+
|
1368 |
+
@add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1369 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1370 |
+
def forward(
|
1371 |
+
self,
|
1372 |
+
input_ids: Optional[torch.Tensor] = None,
|
1373 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1374 |
+
position_ids: Optional[torch.Tensor] = None,
|
1375 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1376 |
+
pixel_masks: Optional[torch.Tensor] = None,
|
1377 |
+
head_mask: Optional[torch.Tensor] = None,
|
1378 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1379 |
+
labels: Optional[torch.Tensor] = None,
|
1380 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
1381 |
+
use_cache: Optional[bool] = None,
|
1382 |
+
output_attentions: Optional[bool] = None,
|
1383 |
+
output_hidden_states: Optional[bool] = None,
|
1384 |
+
return_dict: Optional[bool] = None,
|
1385 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
|
1386 |
+
r"""
|
1387 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1388 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1389 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1390 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
1391 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1392 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1393 |
+
|
1394 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1395 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1396 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1397 |
+
use_cache (`bool`, *optional*):
|
1398 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1399 |
+
`past_key_values`).
|
1400 |
+
|
1401 |
+
Returns:
|
1402 |
+
|
1403 |
+
Examples:
|
1404 |
+
|
1405 |
+
Image captioning example:
|
1406 |
+
|
1407 |
+
```python
|
1408 |
+
>>> from transformers import AutoProcessor, AutoModelForCausalLM
|
1409 |
+
>>> import requests
|
1410 |
+
>>> from PIL import Image
|
1411 |
+
|
1412 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
|
1413 |
+
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
|
1414 |
+
|
1415 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1416 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1417 |
+
|
1418 |
+
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
1419 |
+
|
1420 |
+
>>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
|
1421 |
+
>>> generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
1422 |
+
>>> print(generated_caption)
|
1423 |
+
two cats sleeping on a pink blanket next to remotes.
|
1424 |
+
```
|
1425 |
+
|
1426 |
+
Visual question answering (VQA) example:
|
1427 |
+
|
1428 |
+
```python
|
1429 |
+
>>> from transformers import AutoProcessor, AutoModelForCausalLM
|
1430 |
+
>>> from huggingface_hub import hf_hub_download
|
1431 |
+
>>> from PIL import Image
|
1432 |
+
|
1433 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa")
|
1434 |
+
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa")
|
1435 |
+
|
1436 |
+
>>> file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
|
1437 |
+
>>> image = Image.open(file_path).convert("RGB")
|
1438 |
+
|
1439 |
+
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
1440 |
+
|
1441 |
+
>>> question = "what does the front of the bus say at the top?"
|
1442 |
+
|
1443 |
+
>>> input_ids = processor(text=question, add_special_tokens=False).input_ids
|
1444 |
+
>>> input_ids = [processor.tokenizer.cls_token_id] + input_ids
|
1445 |
+
>>> input_ids = torch.tensor(input_ids).unsqueeze(0)
|
1446 |
+
|
1447 |
+
>>> generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
|
1448 |
+
>>> print(processor.batch_decode(generated_ids, skip_special_tokens=True))
|
1449 |
+
['what does the front of the bus say at the top? special']
|
1450 |
+
```
|
1451 |
+
|
1452 |
+
Video captioning example:
|
1453 |
+
|
1454 |
+
```python
|
1455 |
+
>>> import av
|
1456 |
+
>>> import numpy as np
|
1457 |
+
>>> from PIL import Image
|
1458 |
+
>>> from huggingface_hub import hf_hub_download
|
1459 |
+
>>> from transformers import AutoProcessor, AutoModelForCausalLM
|
1460 |
+
|
1461 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-vatex")
|
1462 |
+
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vatex")
|
1463 |
+
|
1464 |
+
>>> # set seed for reproducability
|
1465 |
+
>>> np.random.seed(45)
|
1466 |
+
|
1467 |
+
|
1468 |
+
>>> def read_video_pyav(container, indices):
|
1469 |
+
... '''
|
1470 |
+
... Decode the video with PyAV decoder.
|
1471 |
+
... Args:
|
1472 |
+
... container (`av.container.input.InputContainer`): PyAV container.
|
1473 |
+
... indices (`List[int]`): List of frame indices to decode.
|
1474 |
+
... Returns:
|
1475 |
+
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
|
1476 |
+
... '''
|
1477 |
+
... frames = []
|
1478 |
+
... container.seek(0)
|
1479 |
+
... start_index = indices[0]
|
1480 |
+
... end_index = indices[-1]
|
1481 |
+
... for i, frame in enumerate(container.decode(video=0)):
|
1482 |
+
... if i > end_index:
|
1483 |
+
... break
|
1484 |
+
... if i >= start_index and i in indices:
|
1485 |
+
... frames.append(frame)
|
1486 |
+
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
1487 |
+
|
1488 |
+
|
1489 |
+
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
|
1490 |
+
... converted_len = int(clip_len * frame_sample_rate)
|
1491 |
+
... end_idx = np.random.randint(converted_len, seg_len)
|
1492 |
+
... start_idx = end_idx - converted_len
|
1493 |
+
... indices = np.linspace(start_idx, end_idx, num=clip_len)
|
1494 |
+
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
|
1495 |
+
... return indices
|
1496 |
+
|
1497 |
+
|
1498 |
+
>>> # load video
|
1499 |
+
>>> file_path = hf_hub_download(
|
1500 |
+
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
|
1501 |
+
... )
|
1502 |
+
>>> container = av.open(file_path)
|
1503 |
+
|
1504 |
+
>>> # sample frames
|
1505 |
+
>>> num_frames = model.config.num_image_with_embedding
|
1506 |
+
>>> indices = sample_frame_indices(
|
1507 |
+
... clip_len=num_frames, frame_sample_rate=4, seg_len=container.streams.video[0].frames
|
1508 |
+
... )
|
1509 |
+
>>> frames = read_video_pyav(container, indices)
|
1510 |
+
|
1511 |
+
>>> pixel_values = processor(images=list(frames), return_tensors="pt").pixel_values
|
1512 |
+
|
1513 |
+
>>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
|
1514 |
+
|
1515 |
+
>>> print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True))
|
1516 |
+
Generated caption: ['a woman is sitting at a table and she is talking about the food she is holding.']
|
1517 |
+
```
|
1518 |
+
"""
|
1519 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1520 |
+
if labels is not None:
|
1521 |
+
use_cache = False
|
1522 |
+
|
1523 |
+
outputs = self.git(
|
1524 |
+
input_ids,
|
1525 |
+
attention_mask=attention_mask,
|
1526 |
+
position_ids=position_ids,
|
1527 |
+
pixel_values=pixel_values,
|
1528 |
+
pixel_masks=pixel_masks,
|
1529 |
+
head_mask=head_mask,
|
1530 |
+
inputs_embeds=inputs_embeds,
|
1531 |
+
past_key_values=past_key_values,
|
1532 |
+
use_cache=use_cache,
|
1533 |
+
output_attentions=output_attentions,
|
1534 |
+
output_hidden_states=output_hidden_states,
|
1535 |
+
return_dict=return_dict,
|
1536 |
+
)
|
1537 |
+
|
1538 |
+
sequence_output = outputs[0]
|
1539 |
+
logits = self.output(sequence_output)
|
1540 |
+
|
1541 |
+
loss = None
|
1542 |
+
if labels is not None:
|
1543 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1544 |
+
num_image_tokens = self.git.encoder.layer[0].attention.self.image_patch_tokens
|
1545 |
+
shifted_logits = logits[:, num_image_tokens:-1, :].contiguous()
|
1546 |
+
labels = labels[:, 1:].contiguous()
|
1547 |
+
loss_fct = CrossEntropyLoss()
|
1548 |
+
loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1549 |
+
|
1550 |
+
if not return_dict:
|
1551 |
+
output = (logits,) + outputs[1:]
|
1552 |
+
return ((loss,) + output) if loss is not None else output
|
1553 |
+
|
1554 |
+
return CausalLMOutputWithPast(
|
1555 |
+
loss=loss,
|
1556 |
+
logits=logits,
|
1557 |
+
past_key_values=outputs.past_key_values,
|
1558 |
+
hidden_states=outputs.hidden_states,
|
1559 |
+
attentions=outputs.attentions,
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
def prepare_inputs_for_generation(
|
1563 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
|
1564 |
+
):
|
1565 |
+
# cut decoder_input_ids if past_key_values is used
|
1566 |
+
if past_key_values is not None:
|
1567 |
+
input_ids = input_ids[:, -1:]
|
1568 |
+
|
1569 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1570 |
+
input_shape = input_ids.shape
|
1571 |
+
if attention_mask is None:
|
1572 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1573 |
+
|
1574 |
+
return {
|
1575 |
+
"input_ids": input_ids,
|
1576 |
+
"attention_mask": attention_mask,
|
1577 |
+
"pixel_values": kwargs.get("pixel_values", None),
|
1578 |
+
"pixel_masks": kwargs.get("pixel_masks", None),
|
1579 |
+
"past_key_values": past_key_values,
|
1580 |
+
"use_cache": use_cache,
|
1581 |
+
}
|
1582 |
+
|
1583 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1584 |
+
reordered_past = ()
|
1585 |
+
for layer_past in past_key_values:
|
1586 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1587 |
+
return reordered_past
|
captioner/vit_pixel_masks_utils.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
|
6 |
+
class ViTPatchMaskGenerator(nn.Module):
|
7 |
+
def __init__(self, patch_size) -> None:
|
8 |
+
super(ViTPatchMaskGenerator, self).__init__()
|
9 |
+
self.patch_size = patch_size
|
10 |
+
self.pool = nn.MaxPool2d(kernel_size=patch_size, stride=patch_size)
|
11 |
+
|
12 |
+
def forward(self, pixel_masks):
|
13 |
+
patch_mask = self.pool(pixel_masks)
|
14 |
+
patch_mask = patch_mask.bool().flatten(1)
|
15 |
+
cls_token_mask = patch_mask.new_ones([patch_mask.shape[0], 1]).bool()
|
16 |
+
patch_mask = torch.cat([cls_token_mask, patch_mask], dim=-1)
|
17 |
+
return patch_mask
|
image_editing_utils.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageDraw, ImageFont
|
2 |
+
import copy
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
def wrap_text(text, font, max_width):
|
6 |
+
lines = []
|
7 |
+
words = text.split(' ')
|
8 |
+
current_line = ''
|
9 |
+
|
10 |
+
for word in words:
|
11 |
+
if font.getsize(current_line + word)[0] <= max_width:
|
12 |
+
current_line += word + ' '
|
13 |
+
else:
|
14 |
+
lines.append(current_line)
|
15 |
+
current_line = word + ' '
|
16 |
+
|
17 |
+
lines.append(current_line)
|
18 |
+
return lines
|
19 |
+
|
20 |
+
def create_bubble_frame(image, text, point, font_path='DejaVuSansCondensed-Bold.ttf', font_size_ratio=0.033):
|
21 |
+
# Load the image
|
22 |
+
if type(image) == np.ndarray:
|
23 |
+
image = Image.fromarray(image)
|
24 |
+
|
25 |
+
image = copy.deepcopy(image)
|
26 |
+
width, height = image.size
|
27 |
+
|
28 |
+
# Calculate max_text_width and font_size based on image dimensions and total number of characters
|
29 |
+
total_chars = len(text)
|
30 |
+
max_text_width = int(0.33 * width)
|
31 |
+
font_size = int(height * font_size_ratio)
|
32 |
+
|
33 |
+
# Load the font
|
34 |
+
font = ImageFont.truetype(font_path, font_size)
|
35 |
+
|
36 |
+
# Wrap the text to fit within the max_text_width
|
37 |
+
lines = wrap_text(text, font, max_text_width)
|
38 |
+
text_width, text_height = font.getsize(lines[0])
|
39 |
+
text_height = text_height * len(lines)
|
40 |
+
|
41 |
+
# Define bubble frame dimensions
|
42 |
+
padding = 10
|
43 |
+
bubble_width = text_width + 2 * padding
|
44 |
+
bubble_height = text_height + 2 * padding
|
45 |
+
|
46 |
+
# Create a new image for the bubble frame
|
47 |
+
bubble = Image.new('RGBA', (bubble_width, bubble_height), (255, 255, 255, 0))
|
48 |
+
|
49 |
+
# Draw the bubble frame on the new image
|
50 |
+
draw = ImageDraw.Draw(bubble)
|
51 |
+
draw.rectangle([(0, 0), (bubble_width - 1, bubble_height - 1)], fill=(255, 255, 255, 0), outline=(255, 255, 255, 0), width=2)
|
52 |
+
|
53 |
+
# Draw the wrapped text line by line
|
54 |
+
y_text = padding
|
55 |
+
for line in lines:
|
56 |
+
draw.text((padding, y_text), line, font=font, fill=(255, 255, 255, 255))
|
57 |
+
y_text += font.getsize(line)[1]
|
58 |
+
|
59 |
+
# Calculate the bubble frame position
|
60 |
+
x, y = point
|
61 |
+
if x + bubble_width > width:
|
62 |
+
x = width - bubble_width
|
63 |
+
if y + bubble_height > height:
|
64 |
+
y = height - bubble_height
|
65 |
+
|
66 |
+
# Paste the bubble frame onto the image
|
67 |
+
image.paste(bubble, (x, y), bubble)
|
68 |
+
return image
|
segmenter/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from segmenter.base_segmenter import BaseSegmenter
|
2 |
+
|
3 |
+
|
4 |
+
def build_segmenter(type, device, args=None):
|
5 |
+
if type == 'base':
|
6 |
+
return BaseSegmenter(device, args.segmenter_checkpoint, reuse_feature=not args.disable_reuse_features)
|
segmenter/base_segmenter.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
from PIL import Image, ImageDraw, ImageOps
|
5 |
+
import numpy as np
|
6 |
+
from typing import Union
|
7 |
+
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import PIL
|
10 |
+
|
11 |
+
class BaseSegmenter:
|
12 |
+
def __init__(self, device, checkpoint, model_type='vit_h', reuse_feature = True):
|
13 |
+
print(f"Initializing BaseSegmenter to {device}")
|
14 |
+
self.device = device
|
15 |
+
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
16 |
+
self.processor = None
|
17 |
+
self.model_type = model_type
|
18 |
+
self.checkpoint = checkpoint
|
19 |
+
self.model = sam_model_registry[self.model_type](checkpoint=self.checkpoint)
|
20 |
+
self.model.to(device=self.device)
|
21 |
+
self.reuse_feature = reuse_feature
|
22 |
+
self.predictor = SamPredictor(self.model)
|
23 |
+
self.mask_generator = SamAutomaticMaskGenerator(self.model)
|
24 |
+
self.image_embedding = None
|
25 |
+
self.image = None
|
26 |
+
|
27 |
+
|
28 |
+
@torch.no_grad()
|
29 |
+
def set_image(self, image: Union[np.ndarray, Image.Image, str]):
|
30 |
+
if type(image) == str: # input path
|
31 |
+
image = Image.open(image)
|
32 |
+
image = np.array(image)
|
33 |
+
elif type(image) == Image.Image:
|
34 |
+
image = np.array(image)
|
35 |
+
self.image = image
|
36 |
+
if self.reuse_feature:
|
37 |
+
self.predictor.set_image(image)
|
38 |
+
self.image_embedding = self.predictor.get_image_embedding()
|
39 |
+
print(self.image_embedding.shape)
|
40 |
+
|
41 |
+
|
42 |
+
@torch.no_grad()
|
43 |
+
def inference(self, image, control):
|
44 |
+
if 'everything' in control['prompt_type']:
|
45 |
+
masks = self.mask_generator.generate(image)
|
46 |
+
new_masks = np.concatenate([mask["segmentation"][np.newaxis,:] for mask in masks])
|
47 |
+
return new_masks
|
48 |
+
else:
|
49 |
+
if not self.reuse_feature:
|
50 |
+
self.set_image(image)
|
51 |
+
self.predictor.set_image(self.image)
|
52 |
+
else:
|
53 |
+
assert self.image_embedding is not None
|
54 |
+
self.predictor.features = self.image_embedding
|
55 |
+
|
56 |
+
if 'mutimask_output' in control:
|
57 |
+
masks, scores, logits = self.predictor.predict(
|
58 |
+
point_coords = np.array(control['input_point']),
|
59 |
+
point_labels = np.array(control['input_label']),
|
60 |
+
multimask_output = True,
|
61 |
+
)
|
62 |
+
elif 'input_boxes' in control:
|
63 |
+
transformed_boxes = self.predictor.transform.apply_boxes_torch(
|
64 |
+
torch.tensor(control["input_boxes"], device=self.predictor.device),
|
65 |
+
image.shape[:2]
|
66 |
+
)
|
67 |
+
masks, _, _ = self.predictor.predict_torch(
|
68 |
+
point_coords=None,
|
69 |
+
point_labels=None,
|
70 |
+
boxes=transformed_boxes,
|
71 |
+
multimask_output=False,
|
72 |
+
)
|
73 |
+
masks = masks.squeeze(1).cpu().numpy()
|
74 |
+
|
75 |
+
else:
|
76 |
+
input_point = np.array(control['input_point']) if 'click' in control['prompt_type'] else None
|
77 |
+
input_label = np.array(control['input_label']) if 'click' in control['prompt_type'] else None
|
78 |
+
input_box = np.array(control['input_box']) if 'box' in control['prompt_type'] else None
|
79 |
+
|
80 |
+
masks, scores, logits = self.predictor.predict(
|
81 |
+
point_coords = input_point,
|
82 |
+
point_labels = input_label,
|
83 |
+
box = input_box,
|
84 |
+
multimask_output = False,
|
85 |
+
)
|
86 |
+
|
87 |
+
if 0 in control['input_label']:
|
88 |
+
mask_input = logits[np.argmax(scores), :, :]
|
89 |
+
masks, scores, logits = self.predictor.predict(
|
90 |
+
point_coords=input_point,
|
91 |
+
point_labels=input_label,
|
92 |
+
box = input_box,
|
93 |
+
mask_input=mask_input[None, :, :],
|
94 |
+
multimask_output=False,
|
95 |
+
)
|
96 |
+
|
97 |
+
return masks
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
image_path = 'segmenter/images/truck.jpg'
|
101 |
+
prompts = [
|
102 |
+
# {
|
103 |
+
# "prompt_type":["click"],
|
104 |
+
# "input_point":[[500, 375]],
|
105 |
+
# "input_label":[1],
|
106 |
+
# "multimask_output":"True",
|
107 |
+
# },
|
108 |
+
{
|
109 |
+
"prompt_type":["click"],
|
110 |
+
"input_point":[[1000, 600], [1325, 625]],
|
111 |
+
"input_label":[1, 0],
|
112 |
+
},
|
113 |
+
# {
|
114 |
+
# "prompt_type":["click", "box"],
|
115 |
+
# "input_box":[425, 600, 700, 875],
|
116 |
+
# "input_point":[[575, 750]],
|
117 |
+
# "input_label": [0]
|
118 |
+
# },
|
119 |
+
# {
|
120 |
+
# "prompt_type":["box"],
|
121 |
+
# "input_boxes": [
|
122 |
+
# [75, 275, 1725, 850],
|
123 |
+
# [425, 600, 700, 875],
|
124 |
+
# [1375, 550, 1650, 800],
|
125 |
+
# [1240, 675, 1400, 750],
|
126 |
+
# ]
|
127 |
+
# },
|
128 |
+
# {
|
129 |
+
# "prompt_type":["everything"]
|
130 |
+
# },
|
131 |
+
]
|
132 |
+
|
133 |
+
init_time = time.time()
|
134 |
+
segmenter = BaseSegmenter(
|
135 |
+
device='cuda',
|
136 |
+
# checkpoint='sam_vit_h_4b8939.pth',
|
137 |
+
checkpoint='segmenter/sam_vit_h_4b8939.pth',
|
138 |
+
model_type='vit_h',
|
139 |
+
reuse_feature=True
|
140 |
+
)
|
141 |
+
print(f'init time: {time.time() - init_time}')
|
142 |
+
|
143 |
+
image_path = 'test_img/img2.jpg'
|
144 |
+
infer_time = time.time()
|
145 |
+
for i, prompt in enumerate(prompts):
|
146 |
+
print(f'{prompt["prompt_type"]} mode')
|
147 |
+
image = Image.open(image_path)
|
148 |
+
segmenter.set_image(np.array(image))
|
149 |
+
masks = segmenter.inference(np.array(image), prompt)
|
150 |
+
Image.fromarray(masks[0]).save('seg.png')
|
151 |
+
print(masks.shape)
|
152 |
+
|
153 |
+
print(f'infer time: {time.time() - infer_time}')
|
segmenter/images/truck.jpg
ADDED
segmenter/readme.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Prepare SAM
|
2 |
+
```
|
3 |
+
pip install git+https://github.com/facebookresearch/segment-anything.git
|
4 |
+
```
|
5 |
+
or
|
6 |
+
```
|
7 |
+
git clone [email protected]:facebookresearch/segment-anything.git
|
8 |
+
cd segment-anything; pip install -e .
|
9 |
+
```
|
10 |
+
|
11 |
+
```
|
12 |
+
pip install opencv-python pycocotools matplotlib onnxruntime onnx
|
13 |
+
```
|
14 |
+
### Download the checkpoint:
|
15 |
+
|
16 |
+
https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
|
17 |
+
|
18 |
+
### Inference
|
19 |
+
|
20 |
+
The prompts are in json format:
|
21 |
+
|
22 |
+
```
|
23 |
+
prompts = [
|
24 |
+
{
|
25 |
+
"prompt_type":["click"],
|
26 |
+
"input_point":[[500, 375]],
|
27 |
+
"input_label":[1],
|
28 |
+
"multimask_output":"True",
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"prompt_type":["click"],
|
32 |
+
"input_point":[[500, 375], [1125, 625]],
|
33 |
+
"input_label":[1, 0],
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"prompt_type":["click", "box"],
|
37 |
+
"input_box":[425, 600, 700, 875],
|
38 |
+
"input_point":[[575, 750]],
|
39 |
+
"input_label": [0]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"prompt_type":["box"],
|
43 |
+
"input_boxes": [
|
44 |
+
[75, 275, 1725, 850],
|
45 |
+
[425, 600, 700, 875],
|
46 |
+
[1375, 550, 1650, 800],
|
47 |
+
[1240, 675, 1400, 750],
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"prompt_type":["everything"]
|
52 |
+
},
|
53 |
+
]
|
54 |
+
```
|
55 |
+
|
56 |
+
In `base_segmenter.py`:
|
57 |
+
```
|
58 |
+
segmenter = BaseSegmenter(
|
59 |
+
device='cuda',
|
60 |
+
checkpoint='sam_vit_h_4b8939.pth',
|
61 |
+
model_type='vit_h'
|
62 |
+
)
|
63 |
+
|
64 |
+
for i, prompt in enumerate(prompts):
|
65 |
+
masks = segmenter.inference(image_path, prompt)
|
66 |
+
```
|
67 |
+
|
68 |
+
Outputs are masks (True and False numpy Matrix), shape: (num of masks, height, weight)
|
test_img/img1.jpg
ADDED
test_img/img1.jpg.raw_mask.png
ADDED
test_img/img10.jpg
ADDED
test_img/img10.jpg.raw_mask.png
ADDED
test_img/img11.jpg
ADDED
test_img/img12.jpg
ADDED
test_img/img12.jpg.raw_mask.png
ADDED
test_img/img13.jpg
ADDED
test_img/img13.jpg.raw_mask.png
ADDED
test_img/img14.jpg
ADDED
test_img/img14.jpg.raw_mask.png
ADDED
test_img/img15.jpg
ADDED
test_img/img15.jpg.raw_mask.png
ADDED
test_img/img16.jpg
ADDED
test_img/img16.jpg.raw_mask.png
ADDED
test_img/img17.jpg
ADDED
test_img/img18.jpg
ADDED
Git LFS Details
|
test_img/img19.jpg
ADDED
test_img/img2.jpg
ADDED
test_img/img2.jpg.raw_mask.png
ADDED
test_img/img20.jpg
ADDED
test_img/img21.jpg
ADDED
test_img/img22.jpg
ADDED
Git LFS Details
|
test_img/img23.jpg
ADDED
test_img/img24.jpg
ADDED
test_img/img25.jpg
ADDED
test_img/img27.jpg
ADDED
test_img/img28.jpg
ADDED