File size: 16,915 Bytes
83cb829 e71c8dc 83cb829 0eb9eab 83cb829 21b8280 0eb9eab a0fe4ce 83cb829 f5ea725 83cb829 a0fe4ce 83cb829 a0fe4ce 83cb829 ee1ba28 83cb829 ee1ba28 83cb829 a0fe4ce 83cb829 ee1ba28 83cb829 a0fe4ce 83cb829 a0fe4ce 83cb829 a0fe4ce 83cb829 a0fe4ce e1a8672 b986f62 cc7a5fe 2c8e643 a1091d4 83cb829 a0fe4ce 83cb829 ab79b9b 83cb829 a0fe4ce 83cb829 a0fe4ce 83cb829 a0fe4ce 83cb829 c332a79 e71c8dc 83cb829 f13db43 83cb829 3b95d85 83cb829 a0fe4ce 83cb829 a0fe4ce 83cb829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
"""
gradio_web_server.py
Entry point for all VLM-Evaluation interactive demos; specify model and get a gradio UI where you can chat with it!
This file is copied from the script used to define the gradio web server in the LLaVa codebase:
https://github.com/haotian-liu/LLaVA/blob/main/llava/serve/gradio_web_server.py with only very minor
modifications.
"""
import argparse
import datetime
import hashlib
import json
import os
import time
import gradio as gr
import requests
# from llava.constants import LOGDIR
from llava.conversation import conv_templates, default_conversation
from llava.utils import build_logger, moderation_msg, server_error_msg, violates_moderation
from serve import INTERACTION_MODES_MAP, MODEL_ID_TO_NAME
LOGDIR = "/home/user/app/logs"
# logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "PrismaticVLMs Client"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_model_list():
ret = requests.post(args.controller_url + "/refresh_all_workers")
assert ret.status_code == 200
ret = requests.post(args.controller_url + "/list_models")
models = ret.json()["models"]
models = sorted(
models, key=lambda x: list(MODEL_ID_TO_NAME.values()).index(x) if x in MODEL_ID_TO_NAME.values() else len(models)
)
# logger.info(f"Models: {models}")
return models
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def load_demo(url_params, request: gr.Request):
# logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
dropdown_update = gr.Dropdown(visible=True)
if "model" in url_params:
model = url_params["model"]
if model in models:
dropdown_update = gr.Dropdown(value=model, visible=True)
state = default_conversation.copy()
return state, dropdown_update
def load_demo_refresh_model_list(request: gr.Request):
# logger.info(f"load_demo. ip: {request.client.host}")
models = get_model_list()
state = default_conversation.copy()
dropdown_update = gr.Dropdown(choices=models, value=models[0] if len(models) > 0 else "")
return state, dropdown_update
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
pass
# with open(get_conv_log_filename(), "a") as fout:
# data = {
# "tstamp": round(time.time(), 4),
# "type": vote_type,
# "model": model_selector,
# "state": state.dict(),
# "ip": request.client.host,
# }
# fout.write(json.dumps(data) + "\n")
def regenerate(state, image_process_mode, request: gr.Request):
# logger.info(f"regenerate. ip: {request.client.host}")
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def clear_history(request: gr.Request):
# logger.info(f"clear_history. ip: {request.client.host}")
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def add_text(state, text, image, image_process_mode, request: gr.Request):
# logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
if not text or not image:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (no_change_btn,) * 5
text = text[:1536] # Hard cut-off
if image is not None:
text = text[:1200] # Hard cut-off for images
if "<image>" not in text:
# text = '<Image><image></Image>' + text
text = text + "\n<image>"
text = (text, image, image_process_mode)
if len(state.get_images(return_pil=True)) > 0:
state = default_conversation.copy()
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def http_bot(state, model_selector, interaction_mode, temperature, max_new_tokens, request: gr.Request):
# logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
model_name = model_selector
if state.skip_next:
# This generate call is skipped due to invalid inputs
gr.Warning("Please provide both a prompt and an image.")
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if len(state.messages) == state.offset + 2:
# First round of conversation
# (Note): Hardcoding llava_v1 conv template for now
new_state = conv_templates["llava_v1"].copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
# Query worker address
controller_url = args.controller_url
ret = requests.post(controller_url + "/get_worker_address", json={"model": model_name})
worker_addr = ret.json()["address"]
# logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
# No available worker
if worker_addr == "":
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
# Construct prompt
prompt = state.get_prompt()
all_images = state.get_images(return_pil=True)
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
for image, im_hash in zip(all_images, all_image_hash):
t = datetime.datetime.now()
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{im_hash}.jpg")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
# Make requests
pload = {
"model": model_name,
"prompt": prompt,
"interaction_mode": interaction_mode,
"temperature": float(temperature),
"max_new_tokens": int(max_new_tokens),
"images": f"List of {len(state.get_images())} images: {all_image_hash}",
}
# logger.info(f"==== request ====\n{pload}")
pload["images"] = state.get_images()
state.messages[-1][-1] = "β"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
# Stream output
response = requests.post(
worker_addr + "/worker_generate_stream", headers=headers, json=pload, stream=True, timeout=10
)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt) :].strip()
state.messages[-1][-1] = output + "β"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
time.sleep(0.03)
except requests.exceptions.RequestException:
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
finish_tstamp = time.time()
# logger.info(f"{output}")
# with open(get_conv_log_filename(), "a") as fout:
# data = {
# "tstamp": round(finish_tstamp, 4),
# "type": "chat",
# "model": model_name,
# "start": round(start_tstamp, 4),
# "finish": round(finish_tstamp, 4),
# "state": state.dict(),
# "images": all_image_hash,
# "ip": request.client.host,
# }
# fout.write(json.dumps(data) + "\n")
title_markdown = """
# Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models
[[Training Code](https://github.com/TRI-ML/prismatic-vlms)]
[[Evaluation Code](https://github.com/TRI-ML/vlm-evaluation)]
| π [[Paper](https://arxiv.org/abs/2402.07865)]
"""
tos_markdown = """
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may
generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. For an optimal experience,
please use desktop computers for this demo, as mobile devices may compromise its quality. This Gradio application was built off
of the Apache-licensed Gradio code released by the LLaVa authors, with light modifications.
"""
learn_more_markdown = """
### License
The service is a research preview intended for non-commercial use only, subject to the model
[License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, and the
same [usage recommendations](https://huggingface.co/liuhaotian/llava-v1.5-13b) as LLaVA 1.5.
"""
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
def build_demo(embed_mode):
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="stone")) as demo:
state = gr.State()
if not embed_mode:
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False,
)
imagebox = gr.Image(type="pil")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image",
visible=False,
)
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(
examples=[
[f"{cur_dir}/examples/cows_in_pasture.png", "How many cows are in this image?"],
[
f"{cur_dir}/examples/monkey_knives.png",
"What is happening in this image?",
],
],
inputs=[imagebox, textbox],
)
with gr.Accordion("Parameters", open=False):
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=2048,
step=64,
interactive=True,
label="Max output tokens",
)
with gr.Accordion("Interaction Mode", open=False):
interaction_modes = list(INTERACTION_MODES_MAP.keys())
interaction_mode = gr.Dropdown(
choices=interaction_modes,
value=interaction_modes[0] if len(interaction_modes) > 0 else "Chat",
interactive=True,
show_label=False,
container=False,
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(elem_id="chatbot", label="PrismaticVLMs Chatbot", height=550)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Generate", variant="primary")
with gr.Row(elem_id="buttons"):
# upvote_btn = gr.Button(value="π Upvote", interactive=False)
# downvote_btn = gr.Button(value="π Downvote", interactive=False)
# flag_btn = gr.Button(value="β οΈ Flag", interactive=False)
# stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
clear_btn = gr.Button(value="ποΈ Clear", interactive=False)
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [regenerate_btn, clear_btn]
regenerate_btn.click(
regenerate, [state, image_process_mode], [state, chatbot, textbox, imagebox, *btn_list], queue=False
).then(
http_bot,
[state, model_selector, interaction_mode, temperature, max_output_tokens],
[state, chatbot, *btn_list],
)
clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, *btn_list], queue=False)
textbox.submit(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox, *btn_list],
queue=False,
).then(
http_bot,
[state, model_selector, interaction_mode, temperature, max_output_tokens],
[state, chatbot, *btn_list],
)
submit_btn.click(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox, *btn_list],
queue=False,
).then(
http_bot,
[state, model_selector, interaction_mode, temperature, max_output_tokens],
[state, chatbot, *btn_list],
)
if args.model_list_mode == "once":
demo.load(load_demo, [url_params], [state, model_selector], _js=get_window_url_params, queue=False)
elif args.model_list_mode == "reload":
demo.load(load_demo_refresh_model_list, None, [state, model_selector], queue=False)
else:
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--controller-url", type=str, default="http://localhost:21001")
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument("--model-list-mode", type=str, default="once", choices=["once", "reload"])
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
# logger.info(f"args: {args}")
models = get_model_list()
# logger.info(args)
demo = build_demo(args.embed)
demo.queue(concurrency_count=args.concurrency_count, api_open=False).launch(
server_name=args.host, server_port=args.port, share=args.share
)
|