File size: 16,915 Bytes
83cb829
 
 
e71c8dc
83cb829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eb9eab
83cb829
 
 
 
 
21b8280
0eb9eab
a0fe4ce
83cb829
 
 
f5ea725
 
 
83cb829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0fe4ce
83cb829
 
 
 
 
 
 
 
 
 
 
 
 
 
a0fe4ce
83cb829
ee1ba28
83cb829
 
 
ee1ba28
83cb829
 
 
 
 
 
a0fe4ce
83cb829
 
ee1ba28
83cb829
 
 
 
a0fe4ce
 
 
 
 
 
 
 
 
 
83cb829
 
 
a0fe4ce
83cb829
 
 
 
 
 
 
 
 
a0fe4ce
83cb829
 
 
 
 
a0fe4ce
e1a8672
b986f62
cc7a5fe
2c8e643
a1091d4
83cb829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0fe4ce
83cb829
 
 
 
 
ab79b9b
83cb829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0fe4ce
83cb829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0fe4ce
83cb829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0fe4ce
 
 
 
 
 
 
 
 
 
 
 
 
 
83cb829
 
 
 
c332a79
 
e71c8dc
83cb829
 
 
 
 
 
f13db43
 
 
83cb829
 
 
 
 
 
3b95d85
 
83cb829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0fe4ce
83cb829
 
 
a0fe4ce
83cb829
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
"""
gradio_web_server.py

Entry point for all VLM-Evaluation interactive demos; specify model and get a gradio UI where you can chat with it!

This file is copied from the script used to define the gradio web server in the LLaVa codebase:
https://github.com/haotian-liu/LLaVA/blob/main/llava/serve/gradio_web_server.py with only very minor
modifications.
"""

import argparse
import datetime
import hashlib
import json
import os
import time

import gradio as gr
import requests
# from llava.constants import LOGDIR
from llava.conversation import conv_templates, default_conversation
from llava.utils import build_logger, moderation_msg, server_error_msg, violates_moderation

from serve import INTERACTION_MODES_MAP, MODEL_ID_TO_NAME

LOGDIR = "/home/user/app/logs"

# logger = build_logger("gradio_web_server", "gradio_web_server.log")

headers = {"User-Agent": "PrismaticVLMs Client"}

no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)


def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
    return name


def get_model_list():
    ret = requests.post(args.controller_url + "/refresh_all_workers")
    assert ret.status_code == 200
    ret = requests.post(args.controller_url + "/list_models")
    models = ret.json()["models"]
    models = sorted(
        models, key=lambda x: list(MODEL_ID_TO_NAME.values()).index(x) if x in MODEL_ID_TO_NAME.values() else len(models)
    )
    # logger.info(f"Models: {models}")
    return models


get_window_url_params = """
function() {
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    console.log(url_params);
    return url_params;
    }
"""


def load_demo(url_params, request: gr.Request):
    # logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")

    dropdown_update = gr.Dropdown(visible=True)
    if "model" in url_params:
        model = url_params["model"]
        if model in models:
            dropdown_update = gr.Dropdown(value=model, visible=True)

    state = default_conversation.copy()
    return state, dropdown_update


def load_demo_refresh_model_list(request: gr.Request):
    # logger.info(f"load_demo. ip: {request.client.host}")
    models = get_model_list()
    state = default_conversation.copy()
    dropdown_update = gr.Dropdown(choices=models, value=models[0] if len(models) > 0 else "")
    return state, dropdown_update


def vote_last_response(state, vote_type, model_selector, request: gr.Request):
    pass
    # with open(get_conv_log_filename(), "a") as fout:
    #     data = {
    #         "tstamp": round(time.time(), 4),
    #         "type": vote_type,
    #         "model": model_selector,
    #         "state": state.dict(),
    #         "ip": request.client.host,
    #     }
    #     fout.write(json.dumps(data) + "\n")


def regenerate(state, image_process_mode, request: gr.Request):
    # logger.info(f"regenerate. ip: {request.client.host}")
    state.messages[-1][-1] = None
    prev_human_msg = state.messages[-2]
    if type(prev_human_msg[1]) in (tuple, list):
        prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def clear_history(request: gr.Request):
    # logger.info(f"clear_history. ip: {request.client.host}")
    state = default_conversation.copy()
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def add_text(state, text, image, image_process_mode, request: gr.Request):
    # logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")

    if not text or not image:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5

    if len(text) <= 0 and image is None:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
    if args.moderate:
        flagged = violates_moderation(text)
        if flagged:
            state.skip_next = True
            return (state, state.to_gradio_chatbot(), moderation_msg, None) + (no_change_btn,) * 5

    text = text[:1536]  # Hard cut-off
    if image is not None:
        text = text[:1200]  # Hard cut-off for images
        if "<image>" not in text:
            # text = '<Image><image></Image>' + text
            text = text + "\n<image>"
        text = (text, image, image_process_mode)
        if len(state.get_images(return_pil=True)) > 0:
            state = default_conversation.copy()
    state.append_message(state.roles[0], text)
    state.append_message(state.roles[1], None)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def http_bot(state, model_selector, interaction_mode, temperature, max_new_tokens, request: gr.Request):
    # logger.info(f"http_bot. ip: {request.client.host}")
    start_tstamp = time.time()
    model_name = model_selector

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        gr.Warning("Please provide both a prompt and an image.")
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
        return

    if len(state.messages) == state.offset + 2:
        # First round of conversation
        # (Note): Hardcoding llava_v1 conv template for now
        new_state = conv_templates["llava_v1"].copy()
        new_state.append_message(new_state.roles[0], state.messages[-2][1])
        new_state.append_message(new_state.roles[1], None)
        state = new_state

    # Query worker address
    controller_url = args.controller_url
    ret = requests.post(controller_url + "/get_worker_address", json={"model": model_name})
    worker_addr = ret.json()["address"]
    # logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")

    # No available worker
    if worker_addr == "":
        state.messages[-1][-1] = server_error_msg
        yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
        return

    # Construct prompt
    prompt = state.get_prompt()

    all_images = state.get_images(return_pil=True)
    all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
    for image, im_hash in zip(all_images, all_image_hash):
        t = datetime.datetime.now()
        filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{im_hash}.jpg")
        if not os.path.isfile(filename):
            os.makedirs(os.path.dirname(filename), exist_ok=True)
            image.save(filename)

    # Make requests
    pload = {
        "model": model_name,
        "prompt": prompt,
        "interaction_mode": interaction_mode,
        "temperature": float(temperature),
        "max_new_tokens": int(max_new_tokens),
        "images": f"List of {len(state.get_images())} images: {all_image_hash}",
    }
    # logger.info(f"==== request ====\n{pload}")

    pload["images"] = state.get_images()

    state.messages[-1][-1] = "β–Œ"
    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5

    try:
        # Stream output
        response = requests.post(
            worker_addr + "/worker_generate_stream", headers=headers, json=pload, stream=True, timeout=10
        )
        for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
            if chunk:
                data = json.loads(chunk.decode())
                if data["error_code"] == 0:
                    output = data["text"][len(prompt) :].strip()
                    state.messages[-1][-1] = output + "β–Œ"
                    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
                else:
                    output = data["text"] + f" (error_code: {data['error_code']})"
                    state.messages[-1][-1] = output
                    yield (state, state.to_gradio_chatbot()) + (
                        disable_btn,
                        disable_btn,
                        disable_btn,
                        enable_btn,
                        enable_btn,
                    )
                    return
                time.sleep(0.03)
    except requests.exceptions.RequestException:
        state.messages[-1][-1] = server_error_msg
        yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
        return

    state.messages[-1][-1] = state.messages[-1][-1][:-1]
    yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5

    finish_tstamp = time.time()
    # logger.info(f"{output}")

    # with open(get_conv_log_filename(), "a") as fout:
    #     data = {
    #         "tstamp": round(finish_tstamp, 4),
    #         "type": "chat",
    #         "model": model_name,
    #         "start": round(start_tstamp, 4),
    #         "finish": round(finish_tstamp, 4),
    #         "state": state.dict(),
    #         "images": all_image_hash,
    #         "ip": request.client.host,
    #     }
    #     fout.write(json.dumps(data) + "\n")


title_markdown = """
# Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models
[[Training Code](https://github.com/TRI-ML/prismatic-vlms)]
[[Evaluation Code](https://github.com/TRI-ML/vlm-evaluation)]
| πŸ“š [[Paper](https://arxiv.org/abs/2402.07865)]
"""

tos_markdown = """
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may
generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. For an optimal experience,
please use desktop computers for this demo, as mobile devices may compromise its quality. This Gradio application was built off 
of the Apache-licensed Gradio code released by the LLaVa authors, with light modifications.
"""


learn_more_markdown = """
### License
The service is a research preview intended for non-commercial use only, subject to the model
[License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, and the 
same [usage recommendations](https://huggingface.co/liuhaotian/llava-v1.5-13b) as LLaVA 1.5.
"""

block_css = """

#buttons button {
    min-width: min(120px,100%);
}

"""


def build_demo(embed_mode):
    textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)

    with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="stone")) as demo:
        state = gr.State()

        if not embed_mode:
            gr.Markdown(title_markdown)

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Row(elem_id="model_selector_row"):
                    model_selector = gr.Dropdown(
                        choices=models,
                        value=models[0] if len(models) > 0 else "",
                        interactive=True,
                        show_label=False,
                        container=False,
                    )

                imagebox = gr.Image(type="pil")
                image_process_mode = gr.Radio(
                    ["Crop", "Resize", "Pad", "Default"],
                    value="Default",
                    label="Preprocess for non-square image",
                    visible=False,
                )

                cur_dir = os.path.dirname(os.path.abspath(__file__))
                gr.Examples(
                    examples=[
                        [f"{cur_dir}/examples/cows_in_pasture.png", "How many cows are in this image?"],
                        [
                            f"{cur_dir}/examples/monkey_knives.png",
                            "What is happening in this image?",
                        ],
                    ],
                    inputs=[imagebox, textbox],
                )

                with gr.Accordion("Parameters", open=False):
                    temperature = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.2,
                        step=0.1,
                        interactive=True,
                        label="Temperature",
                    )
                    max_output_tokens = gr.Slider(
                        minimum=0,
                        maximum=4096,
                        value=2048,
                        step=64,
                        interactive=True,
                        label="Max output tokens",
                    )

                with gr.Accordion("Interaction Mode", open=False):
                    interaction_modes = list(INTERACTION_MODES_MAP.keys())
                    interaction_mode = gr.Dropdown(
                        choices=interaction_modes,
                        value=interaction_modes[0] if len(interaction_modes) > 0 else "Chat",
                        interactive=True,
                        show_label=False,
                        container=False,
                    )

            with gr.Column(scale=8):
                chatbot = gr.Chatbot(elem_id="chatbot", label="PrismaticVLMs Chatbot", height=550)
                with gr.Row():
                    with gr.Column(scale=8):
                        textbox.render()
                    with gr.Column(scale=1, min_width=50):
                        submit_btn = gr.Button(value="Generate", variant="primary")
                with gr.Row(elem_id="buttons"):
                    # upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=False)
                    # downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=False)
                    # flag_btn = gr.Button(value="⚠️  Flag", interactive=False)
                    # stop_btn = gr.Button(value="⏹️  Stop Generation", interactive=False)
                    regenerate_btn = gr.Button(value="πŸ”„  Regenerate", interactive=False)
                    clear_btn = gr.Button(value="πŸ—‘οΈ  Clear", interactive=False)

        if not embed_mode:
            gr.Markdown(tos_markdown)
            gr.Markdown(learn_more_markdown)
        url_params = gr.JSON(visible=False)

        # Register listeners
        btn_list = [regenerate_btn, clear_btn]

        regenerate_btn.click(
            regenerate, [state, image_process_mode], [state, chatbot, textbox, imagebox, *btn_list], queue=False
        ).then(
            http_bot,
            [state, model_selector, interaction_mode, temperature, max_output_tokens],
            [state, chatbot, *btn_list],
        )

        clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox, *btn_list], queue=False)

        textbox.submit(
            add_text,
            [state, textbox, imagebox, image_process_mode],
            [state, chatbot, textbox, imagebox, *btn_list],
            queue=False,
        ).then(
            http_bot,
            [state, model_selector, interaction_mode, temperature, max_output_tokens],
            [state, chatbot, *btn_list],
        )

        submit_btn.click(
            add_text,
            [state, textbox, imagebox, image_process_mode],
            [state, chatbot, textbox, imagebox, *btn_list],
            queue=False,
        ).then(
            http_bot,
            [state, model_selector, interaction_mode, temperature, max_output_tokens],
            [state, chatbot, *btn_list],
        )

        if args.model_list_mode == "once":
            demo.load(load_demo, [url_params], [state, model_selector], _js=get_window_url_params, queue=False)
        elif args.model_list_mode == "reload":
            demo.load(load_demo_refresh_model_list, None, [state, model_selector], queue=False)
        else:
            raise ValueError(f"Unknown model list mode: {args.model_list_mode}")

    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int)
    parser.add_argument("--controller-url", type=str, default="http://localhost:21001")
    parser.add_argument("--concurrency-count", type=int, default=10)
    parser.add_argument("--model-list-mode", type=str, default="once", choices=["once", "reload"])
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--moderate", action="store_true")
    parser.add_argument("--embed", action="store_true")
    args = parser.parse_args()
    # logger.info(f"args: {args}")

    models = get_model_list()

    # logger.info(args)
    demo = build_demo(args.embed)
    demo.queue(concurrency_count=args.concurrency_count, api_open=False).launch(
        server_name=args.host, server_port=args.port, share=args.share
    )