T2V-Turbo / app.py
Ji4chenLi
initial test
9f200a2
raw
history blame
8.56 kB
import os
import uuid
import gradio as gr
import numpy as np
import random
import time
from omegaconf import OmegaConf
import spaces
import torch
import torchvision
from concurrent.futures import ThreadPoolExecutor
import uuid
from utils.lora import collapse_lora, monkeypatch_remove_lora
from utils.lora_handler import LoraHandler
from utils.common_utils import load_model_checkpoint
from utils.utils import instantiate_from_config
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
if torch.cuda.is_available():
config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
model_config = config.pop("model", OmegaConf.create())
pretrained_t2v = instantiate_from_config(model_config)
pretrained_t2v = load_model_checkpoint(pretrained_t2v, "checkpoints/vc2_model.ckpt")
unet_config = model_config["params"]["unet_config"]
unet_config["params"]["time_cond_proj_dim"] = 256
unet = instantiate_from_config(unet_config)
unet.load_state_dict(
pretrained_t2v.model.diffusion_model.state_dict(), strict=False
)
use_unet_lora = True
lora_manager = LoraHandler(
version="cloneofsimo",
use_unet_lora=use_unet_lora,
save_for_webui=True,
unet_replace_modules=["UNetModel"],
)
lora_manager.add_lora_to_model(
use_unet_lora,
unet,
lora_manager.unet_replace_modules,
lora_path="checkpoints/unet_lora.pt",
dropout=0.1,
r=64,
)
unet.eval()
collapse_lora(unet, lora_manager.unet_replace_modules)
monkeypatch_remove_lora(unet)
torch.save(unet.state_dict(), "checkpoints/merged_unet.pt")
pretrained_t2v.model.diffusion_model = unet
scheduler = T2VTurboScheduler(
linear_start=model_config["params"]["linear_start"],
linear_end=model_config["params"]["linear_end"],
)
pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)
pipeline.to(device)
else:
assert False
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_video(
vid_tensor, profile: gr.OAuthProfile | None, metadata: dict, root_path="./", fps=16
):
unique_name = str(uuid.uuid4()) + ".mp4"
prefix = ""
for k, v in metadata.items():
prefix += f"{k}={v}_"
unique_name = prefix + unique_name
unique_name = os.path.join(root_path, unique_name)
video = vid_tensor.detach().cpu()
video = torch.clamp(video.float(), -1.0, 1.0)
video = video.permute(1, 0, 2, 3) # t,c,h,w
video = (video + 1.0) / 2.0
video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
unique_name, video, fps=fps, video_codec="h264", options={"crf": "10"}
)
return unique_name
def save_videos(
video_array, profile: gr.OAuthProfile | None, metadata: dict, fps: int = 16
):
paths = []
root_path = "./videos/"
os.makedirs(root_path, exist_ok=True)
with ThreadPoolExecutor() as executor:
paths = list(
executor.map(
save_video,
video_array,
[profile] * len(video_array),
[metadata] * len(video_array),
[root_path] * len(video_array),
[fps] * len(video_array),
)
)
return paths[0]
@spaces.GPU(duration=60)
def generate(
prompt: str,
seed: int = 0,
guidance_scale: float = 7.5,
num_inference_steps: int = 4,
num_frames: int = 16,
fps: int = 16,
randomize_seed: bool = False,
param_dtype="torch.float16",
progress=gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None,
):
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
pipeline.to(
torch_device=device,
torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32,
)
start_time = time.time()
result = pipeline(
prompt=prompt,
frames=num_frames,
fps=fps,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_videos_per_prompt=1,
)
paths = save_videos(
result,
profile,
metadata={
"prompt": prompt,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
},
fps=fps,
)
print(time.time() - start_time)
return paths, seed
examples = [
"An astronaut riding a horse.",
"Darth vader surfing in waves.",
"Robot dancing in times square.",
"Clown fish swimming through the coral reef.",
"Pikachu snowboarding.",
"With the style of van gogh, A young couple dances under the moonlight by the lake.",
"A young woman with glasses is jogging in the park wearing a pink headband.",
"Impressionist style, a yellow rubber duck floating on the wave on the sunset",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"With the style of low-poly game art, A majestic, white horse gallops gracefully across a moonlit beach.",
]
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css="style.css") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result_video = gr.Video(
label="Generated Video", interactive=False, autoplay=True
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True,
)
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
dtype_choices = ["torch.float16", "torch.float32"]
param_dtype = gr.Radio(
dtype_choices,
label="torch.dtype",
value=dtype_choices[0],
interactive=True,
info="To save GPU memory, use torch.float16. For better quality, use torch.float32.",
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Row():
num_frames = gr.Slider(
label="Number of Video Frames",
minimum=16,
maximum=48,
step=8,
value=16,
)
fps = gr.Slider(
label="FPS",
minimum=8,
maximum=32,
step=4,
value=16,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result_video,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
seed,
guidance_scale,
num_inference_steps,
num_frames,
fps,
randomize_seed,
param_dtype,
],
outputs=[result_video, seed],
api_name="run",
)
demo.queue().launch()