|
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
import json |
|
|
|
from constants import * |
|
from huggingface_hub import Repository |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
global data_component, filter_component |
|
|
|
|
|
def download_csv(): |
|
|
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, |
|
repo_type="dataset") |
|
submission_repo.git_pull() |
|
return CSV_DIR, gr.update(visible=True) |
|
|
|
|
|
def upload_file(files): |
|
file_paths = [file.name for file in files] |
|
return file_paths |
|
|
|
|
|
def add_new_eval( |
|
input_file, |
|
model_name_textbox: str, |
|
revision_name_textbox: str, |
|
model_link: str, |
|
model_date:str, |
|
LLM_type: str, |
|
LLM_name_textbox: str, |
|
): |
|
if input_file is None: |
|
return "Error! Empty file!" |
|
|
|
upload_data = json.loads(input_file) |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, |
|
repo_type="dataset",git_user="auto-uploader",git_email="[email protected]") |
|
submission_repo.git_pull() |
|
csv_data = pd.read_csv(CSV_DIR) |
|
|
|
if LLM_type == 'Other': |
|
LLM_name = LLM_name_textbox |
|
else: |
|
LLM_name = LLM_type |
|
|
|
if revision_name_textbox == '': |
|
col = csv_data.shape[0] |
|
model_name = model_name_textbox |
|
else: |
|
model_name = revision_name_textbox |
|
model_name_list = csv_data['Model'] |
|
name_list = [name.split(']')[0][1:] for name in model_name_list] |
|
if revision_name_textbox not in name_list: |
|
col = csv_data.shape[0] |
|
else: |
|
col = name_list.index(revision_name_textbox) |
|
|
|
if model_link == '' or "](" in model_name: |
|
model_name = model_name |
|
else: |
|
model_name = '[' + model_name + '](' + model_link + ')' |
|
|
|
|
|
new_data = [ |
|
model_name, |
|
LLM_name, |
|
model_date, |
|
model_link |
|
] |
|
for key in TASK_INFO: |
|
if key in upload_data: |
|
new_data.append(round(100*upload_data[key],1)) |
|
else: |
|
new_data.append(0) |
|
|
|
|
|
csv_data.loc[col] = new_data |
|
csv_data = csv_data.to_csv(CSV_DIR, index=False) |
|
submission_repo.push_to_hub() |
|
return 0 |
|
|
|
|
|
def get_baseline_df(): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, |
|
repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(CSV_DIR) |
|
df = df.sort_values(by="Overall", ascending=False) |
|
present_columns = MODEL_INFO + checkbox_group.value |
|
df = df[present_columns] |
|
return df |
|
|
|
|
|
def get_all_df(): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, |
|
repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(CSV_DIR) |
|
df = df.sort_values(by="Overall", ascending=False) |
|
return df |
|
|
|
|
|
def on_filter_model_size_method_change(selected_columns): |
|
updated_data = get_all_df() |
|
|
|
|
|
selected_columns = [item for item in TASK_INFO if item in selected_columns] |
|
present_columns = MODEL_INFO + selected_columns |
|
|
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False) |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] |
|
|
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
return filter_component |
|
|
|
|
|
block = gr.Blocks() |
|
with block: |
|
gr.Markdown( |
|
LEADERBORAD_INTRODUCTION |
|
) |
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
LVBench", elem_id="lvbench-tab-table", id=1): |
|
with gr.Row(): |
|
with gr.Accordion("Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
lines=10, |
|
) |
|
|
|
gr.Markdown( |
|
TABLE_INTRODUCTION |
|
) |
|
|
|
|
|
checkbox_group = gr.CheckboxGroup( |
|
choices=TASK_INFO, |
|
value=AVG_INFO, |
|
label="Evaluation Dimension", |
|
interactive=True, |
|
) |
|
|
|
data_component = gr.components.Dataframe( |
|
value=get_baseline_df, |
|
headers=COLUMN_NAMES, |
|
type="pandas", |
|
datatype=DATA_TITILE_TYPE, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[checkbox_group], |
|
outputs=data_component) |
|
|
|
|
|
with gr.TabItem("π About", elem_id="lvbench-tab-table", id=2): |
|
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("π Submit here! ", elem_id="lvbench-tab-table", id=3): |
|
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("# βοΈβ¨ Submit your model evaluation json file here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox( |
|
label="Model name", placeholder="CogVLM2-Video" |
|
) |
|
revision_name_textbox = gr.Textbox( |
|
label="Revision Model Name", placeholder="CogVLM2-Video" |
|
) |
|
|
|
with gr.Column(): |
|
LLM_type = gr.Dropdown( |
|
choices=["LLaMA-3-8B", "Vicuna-7B", "Flan-T5-XL", "LLaMA-7B", "InternLM-7B", "Other"], |
|
label="LLM type", |
|
multiselect=False, |
|
value="LLaMA-3-8B", |
|
interactive=True, |
|
) |
|
LLM_name_textbox = gr.Textbox( |
|
label="LLM model (for Other)", |
|
placeholder="LLaMA-3-8B" |
|
) |
|
model_link = gr.Textbox( |
|
label="Model Link", placeholder="https://cogvlm2-video.github.io/" |
|
) |
|
model_date = gr.Textbox( |
|
label="Model Date", placeholder="2024/8/22" |
|
) |
|
|
|
|
|
with gr.Column(): |
|
input_file = gr.components.File(label="Click to Upload a json File", file_count="single", type='binary') |
|
submit_button = gr.Button("Submit Eval") |
|
|
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
inputs=[ |
|
input_file, |
|
model_name_textbox, |
|
revision_name_textbox, |
|
model_link, |
|
model_date, |
|
LLM_type, |
|
LLM_name_textbox, |
|
], |
|
) |
|
|
|
|
|
def refresh_data(): |
|
value1 = get_baseline_df() |
|
return value1 |
|
|
|
|
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
with gr.Row(): |
|
result_download = gr.Button("Download Leaderboard") |
|
file_download = gr.File(label="download the csv of leaderborad.", visible=False) |
|
data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component) |
|
result_download.click(download_csv, inputs=None, outputs=[file_download, file_download]) |
|
|
|
block.launch() |
|
|