import whisper import yt_dlp #from transformers import pipeline import gradio as gr import os import re model = whisper.load_model("base") #summarizer = pipeline("summarization") def get_text(url): try: if url != '': output_text_transcribe = '' with yt_dlp.YoutubeDL({'format': 'bestaudio', 'outtmpl': '%(id)s.%(ext)s'}) as ydl: info_dict = ydl.extract_info(url, download=True) audio_file = ydl.prepare_filename(info_dict) result = model.transcribe(audio_file) return result['text'].strip() except Exception as e: raise gr.InterfaceError(f"Exception: {e}. There was a problem getting the video or audio of the URL provided.") #def get_summary(article): #try: #first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5]) #b = summarizer(first_sentences, min_length = 20, max_length = 120, do_sample = False) #b = b[0]['summary_text'].replace(' .', '.').strip() #return b #except Exception as e: #raise gr.InterfaceError(f"Exception: {e}. There was a problem summarizing the transcript.") with gr.Blocks() as demo: gr.Markdown("

Free Fast YouTube URL Video-to-Text using OpenAI's Whisper Model

") #gr.Markdown("
Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.
") gr.Markdown("
Enter the link of any YouTube video to generate a text transcript of the video.
") gr.Markdown("
'Whisper is a neural net that approaches human level robustness and accuracy on English speech recognition.'
") gr.Markdown("
Transcription takes 5-10 seconds per minute of the video (bad audio/hard accents slow it down a bit). #patience
If you have time while waiting, check out my AI blog (opens in new tab).
") input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL') result_button_transcribe = gr.Button('1. Transcribe') output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript') #result_button_summary = gr.Button('2. Create Summary') #output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary') result_button_transcribe.click(get_text, inputs = input_text_url, outputs = output_text_transcribe) #result_button_summary.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary) demo.queue(default_enabled = True).launch(debug = True)