Spaces:
Runtime error
Runtime error
""" Generic Efficient Networks | |
A generic MobileNet class with building blocks to support a variety of models: | |
* EfficientNet (B0-B8, L2 + Tensorflow pretrained AutoAug/RandAug/AdvProp/NoisyStudent ports) | |
- EfficientNet: Rethinking Model Scaling for CNNs - https://arxiv.org/abs/1905.11946 | |
- CondConv: Conditionally Parameterized Convolutions for Efficient Inference - https://arxiv.org/abs/1904.04971 | |
- Adversarial Examples Improve Image Recognition - https://arxiv.org/abs/1911.09665 | |
- Self-training with Noisy Student improves ImageNet classification - https://arxiv.org/abs/1911.04252 | |
* EfficientNet-Lite | |
* MixNet (Small, Medium, and Large) | |
- MixConv: Mixed Depthwise Convolutional Kernels - https://arxiv.org/abs/1907.09595 | |
* MNasNet B1, A1 (SE), Small | |
- MnasNet: Platform-Aware Neural Architecture Search for Mobile - https://arxiv.org/abs/1807.11626 | |
* FBNet-C | |
- FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable NAS - https://arxiv.org/abs/1812.03443 | |
* Single-Path NAS Pixel1 | |
- Single-Path NAS: Designing Hardware-Efficient ConvNets - https://arxiv.org/abs/1904.02877 | |
* And likely more... | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .config import layer_config_kwargs, is_scriptable | |
from .conv2d_layers import select_conv2d | |
from .helpers import load_pretrained | |
from .efficientnet_builder import * | |
__all__ = ['GenEfficientNet', 'mnasnet_050', 'mnasnet_075', 'mnasnet_100', 'mnasnet_b1', 'mnasnet_140', | |
'semnasnet_050', 'semnasnet_075', 'semnasnet_100', 'mnasnet_a1', 'semnasnet_140', 'mnasnet_small', | |
'mobilenetv2_100', 'mobilenetv2_140', 'mobilenetv2_110d', 'mobilenetv2_120d', | |
'fbnetc_100', 'spnasnet_100', 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', | |
'efficientnet_b4', 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'efficientnet_b8', | |
'efficientnet_l2', 'efficientnet_es', 'efficientnet_em', 'efficientnet_el', | |
'efficientnet_cc_b0_4e', 'efficientnet_cc_b0_8e', 'efficientnet_cc_b1_8e', | |
'efficientnet_lite0', 'efficientnet_lite1', 'efficientnet_lite2', 'efficientnet_lite3', 'efficientnet_lite4', | |
'tf_efficientnet_b0', 'tf_efficientnet_b1', 'tf_efficientnet_b2', 'tf_efficientnet_b3', | |
'tf_efficientnet_b4', 'tf_efficientnet_b5', 'tf_efficientnet_b6', 'tf_efficientnet_b7', 'tf_efficientnet_b8', | |
'tf_efficientnet_b0_ap', 'tf_efficientnet_b1_ap', 'tf_efficientnet_b2_ap', 'tf_efficientnet_b3_ap', | |
'tf_efficientnet_b4_ap', 'tf_efficientnet_b5_ap', 'tf_efficientnet_b6_ap', 'tf_efficientnet_b7_ap', | |
'tf_efficientnet_b8_ap', 'tf_efficientnet_b0_ns', 'tf_efficientnet_b1_ns', 'tf_efficientnet_b2_ns', | |
'tf_efficientnet_b3_ns', 'tf_efficientnet_b4_ns', 'tf_efficientnet_b5_ns', 'tf_efficientnet_b6_ns', | |
'tf_efficientnet_b7_ns', 'tf_efficientnet_l2_ns', 'tf_efficientnet_l2_ns_475', | |
'tf_efficientnet_es', 'tf_efficientnet_em', 'tf_efficientnet_el', | |
'tf_efficientnet_cc_b0_4e', 'tf_efficientnet_cc_b0_8e', 'tf_efficientnet_cc_b1_8e', | |
'tf_efficientnet_lite0', 'tf_efficientnet_lite1', 'tf_efficientnet_lite2', 'tf_efficientnet_lite3', | |
'tf_efficientnet_lite4', | |
'mixnet_s', 'mixnet_m', 'mixnet_l', 'mixnet_xl', 'tf_mixnet_s', 'tf_mixnet_m', 'tf_mixnet_l'] | |
model_urls = { | |
'mnasnet_050': None, | |
'mnasnet_075': None, | |
'mnasnet_100': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_b1-74cb7081.pth', | |
'mnasnet_140': None, | |
'mnasnet_small': None, | |
'semnasnet_050': None, | |
'semnasnet_075': None, | |
'semnasnet_100': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_a1-d9418771.pth', | |
'semnasnet_140': None, | |
'mobilenetv2_100': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth', | |
'mobilenetv2_110d': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth', | |
'mobilenetv2_120d': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth', | |
'mobilenetv2_140': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth', | |
'fbnetc_100': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetc_100-c345b898.pth', | |
'spnasnet_100': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/spnasnet_100-048bc3f4.pth', | |
'efficientnet_b0': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth', | |
'efficientnet_b1': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth', | |
'efficientnet_b2': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth', | |
'efficientnet_b3': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth', | |
'efficientnet_b4': None, | |
'efficientnet_b5': None, | |
'efficientnet_b6': None, | |
'efficientnet_b7': None, | |
'efficientnet_b8': None, | |
'efficientnet_l2': None, | |
'efficientnet_es': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth', | |
'efficientnet_em': None, | |
'efficientnet_el': None, | |
'efficientnet_cc_b0_4e': None, | |
'efficientnet_cc_b0_8e': None, | |
'efficientnet_cc_b1_8e': None, | |
'efficientnet_lite0': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_lite0_ra-37913777.pth', | |
'efficientnet_lite1': None, | |
'efficientnet_lite2': None, | |
'efficientnet_lite3': None, | |
'efficientnet_lite4': None, | |
'tf_efficientnet_b0': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth', | |
'tf_efficientnet_b1': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth', | |
'tf_efficientnet_b2': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth', | |
'tf_efficientnet_b3': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_aa-84b4657e.pth', | |
'tf_efficientnet_b4': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_aa-818f208c.pth', | |
'tf_efficientnet_b5': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ra-9a3e5369.pth', | |
'tf_efficientnet_b6': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_aa-80ba17e4.pth', | |
'tf_efficientnet_b7': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth', | |
'tf_efficientnet_b8': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth', | |
'tf_efficientnet_b0_ap': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth', | |
'tf_efficientnet_b1_ap': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth', | |
'tf_efficientnet_b2_ap': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth', | |
'tf_efficientnet_b3_ap': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth', | |
'tf_efficientnet_b4_ap': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth', | |
'tf_efficientnet_b5_ap': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth', | |
'tf_efficientnet_b6_ap': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth', | |
'tf_efficientnet_b7_ap': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth', | |
'tf_efficientnet_b8_ap': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth', | |
'tf_efficientnet_b0_ns': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth', | |
'tf_efficientnet_b1_ns': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth', | |
'tf_efficientnet_b2_ns': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth', | |
'tf_efficientnet_b3_ns': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth', | |
'tf_efficientnet_b4_ns': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth', | |
'tf_efficientnet_b5_ns': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth', | |
'tf_efficientnet_b6_ns': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth', | |
'tf_efficientnet_b7_ns': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth', | |
'tf_efficientnet_l2_ns_475': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns_475-bebbd00a.pth', | |
'tf_efficientnet_l2_ns': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth', | |
'tf_efficientnet_es': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_es-ca1afbfe.pth', | |
'tf_efficientnet_em': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_em-e78cfe58.pth', | |
'tf_efficientnet_el': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_el-5143854e.pth', | |
'tf_efficientnet_cc_b0_4e': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth', | |
'tf_efficientnet_cc_b0_8e': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth', | |
'tf_efficientnet_cc_b1_8e': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth', | |
'tf_efficientnet_lite0': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite0-0aa007d2.pth', | |
'tf_efficientnet_lite1': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite1-bde8b488.pth', | |
'tf_efficientnet_lite2': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite2-dcccb7df.pth', | |
'tf_efficientnet_lite3': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite3-b733e338.pth', | |
'tf_efficientnet_lite4': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite4-741542c3.pth', | |
'mixnet_s': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_s-a907afbc.pth', | |
'mixnet_m': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_m-4647fc68.pth', | |
'mixnet_l': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_l-5a9a2ed8.pth', | |
'mixnet_xl': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_xl_ra-aac3c00c.pth', | |
'tf_mixnet_s': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_s-89d3354b.pth', | |
'tf_mixnet_m': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_m-0f4d8805.pth', | |
'tf_mixnet_l': | |
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_l-6c92e0c8.pth', | |
} | |
class GenEfficientNet(nn.Module): | |
""" Generic EfficientNets | |
An implementation of mobile optimized networks that covers: | |
* EfficientNet (B0-B8, L2, CondConv, EdgeTPU) | |
* MixNet (Small, Medium, and Large, XL) | |
* MNASNet A1, B1, and small | |
* FBNet C | |
* Single-Path NAS Pixel1 | |
""" | |
def __init__(self, block_args, num_classes=1000, in_chans=3, num_features=1280, stem_size=32, fix_stem=False, | |
channel_multiplier=1.0, channel_divisor=8, channel_min=None, | |
pad_type='', act_layer=nn.ReLU, drop_rate=0., drop_connect_rate=0., | |
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, | |
weight_init='goog'): | |
super(GenEfficientNet, self).__init__() | |
self.drop_rate = drop_rate | |
if not fix_stem: | |
stem_size = round_channels(stem_size, channel_multiplier, channel_divisor, channel_min) | |
self.conv_stem = select_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) | |
self.bn1 = norm_layer(stem_size, **norm_kwargs) | |
self.act1 = act_layer(inplace=True) | |
in_chs = stem_size | |
builder = EfficientNetBuilder( | |
channel_multiplier, channel_divisor, channel_min, | |
pad_type, act_layer, se_kwargs, norm_layer, norm_kwargs, drop_connect_rate) | |
self.blocks = nn.Sequential(*builder(in_chs, block_args)) | |
in_chs = builder.in_chs | |
self.conv_head = select_conv2d(in_chs, num_features, 1, padding=pad_type) | |
self.bn2 = norm_layer(num_features, **norm_kwargs) | |
self.act2 = act_layer(inplace=True) | |
self.global_pool = nn.AdaptiveAvgPool2d(1) | |
self.classifier = nn.Linear(num_features, num_classes) | |
for n, m in self.named_modules(): | |
if weight_init == 'goog': | |
initialize_weight_goog(m, n) | |
else: | |
initialize_weight_default(m, n) | |
def features(self, x): | |
x = self.conv_stem(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
x = self.blocks(x) | |
x = self.conv_head(x) | |
x = self.bn2(x) | |
x = self.act2(x) | |
return x | |
def as_sequential(self): | |
layers = [self.conv_stem, self.bn1, self.act1] | |
layers.extend(self.blocks) | |
layers.extend([ | |
self.conv_head, self.bn2, self.act2, | |
self.global_pool, nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier]) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.features(x) | |
x = self.global_pool(x) | |
x = x.flatten(1) | |
if self.drop_rate > 0.: | |
x = F.dropout(x, p=self.drop_rate, training=self.training) | |
return self.classifier(x) | |
def _create_model(model_kwargs, variant, pretrained=False): | |
as_sequential = model_kwargs.pop('as_sequential', False) | |
model = GenEfficientNet(**model_kwargs) | |
if pretrained: | |
load_pretrained(model, model_urls[variant]) | |
if as_sequential: | |
model = model.as_sequential() | |
return model | |
def _gen_mnasnet_a1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates a mnasnet-a1 model. | |
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet | |
Paper: https://arxiv.org/pdf/1807.11626.pdf. | |
Args: | |
channel_multiplier: multiplier to number of channels per layer. | |
""" | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s1_e1_c16_noskip'], | |
# stage 1, 112x112 in | |
['ir_r2_k3_s2_e6_c24'], | |
# stage 2, 56x56 in | |
['ir_r3_k5_s2_e3_c40_se0.25'], | |
# stage 3, 28x28 in | |
['ir_r4_k3_s2_e6_c80'], | |
# stage 4, 14x14in | |
['ir_r2_k3_s1_e6_c112_se0.25'], | |
# stage 5, 14x14in | |
['ir_r3_k5_s2_e6_c160_se0.25'], | |
# stage 6, 7x7 in | |
['ir_r1_k3_s1_e6_c320'], | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def), | |
stem_size=32, | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, 'relu'), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_mnasnet_b1(variant, channel_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates a mnasnet-b1 model. | |
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet | |
Paper: https://arxiv.org/pdf/1807.11626.pdf. | |
Args: | |
channel_multiplier: multiplier to number of channels per layer. | |
""" | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s1_c16_noskip'], | |
# stage 1, 112x112 in | |
['ir_r3_k3_s2_e3_c24'], | |
# stage 2, 56x56 in | |
['ir_r3_k5_s2_e3_c40'], | |
# stage 3, 28x28 in | |
['ir_r3_k5_s2_e6_c80'], | |
# stage 4, 14x14in | |
['ir_r2_k3_s1_e6_c96'], | |
# stage 5, 14x14in | |
['ir_r4_k5_s2_e6_c192'], | |
# stage 6, 7x7 in | |
['ir_r1_k3_s1_e6_c320_noskip'] | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def), | |
stem_size=32, | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, 'relu'), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_mnasnet_small(variant, channel_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates a mnasnet-b1 model. | |
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet | |
Paper: https://arxiv.org/pdf/1807.11626.pdf. | |
Args: | |
channel_multiplier: multiplier to number of channels per layer. | |
""" | |
arch_def = [ | |
['ds_r1_k3_s1_c8'], | |
['ir_r1_k3_s2_e3_c16'], | |
['ir_r2_k3_s2_e6_c16'], | |
['ir_r4_k5_s2_e6_c32_se0.25'], | |
['ir_r3_k3_s1_e6_c32_se0.25'], | |
['ir_r3_k5_s2_e6_c88_se0.25'], | |
['ir_r1_k3_s1_e6_c144'] | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def), | |
stem_size=8, | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, 'relu'), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_mobilenet_v2( | |
variant, channel_multiplier=1.0, depth_multiplier=1.0, fix_stem_head=False, pretrained=False, **kwargs): | |
""" Generate MobileNet-V2 network | |
Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py | |
Paper: https://arxiv.org/abs/1801.04381 | |
""" | |
arch_def = [ | |
['ds_r1_k3_s1_c16'], | |
['ir_r2_k3_s2_e6_c24'], | |
['ir_r3_k3_s2_e6_c32'], | |
['ir_r4_k3_s2_e6_c64'], | |
['ir_r3_k3_s1_e6_c96'], | |
['ir_r3_k3_s2_e6_c160'], | |
['ir_r1_k3_s1_e6_c320'], | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def, depth_multiplier=depth_multiplier, fix_first_last=fix_stem_head), | |
num_features=1280 if fix_stem_head else round_channels(1280, channel_multiplier, 8, None), | |
stem_size=32, | |
fix_stem=fix_stem_head, | |
channel_multiplier=channel_multiplier, | |
norm_kwargs=resolve_bn_args(kwargs), | |
act_layer=nn.ReLU6, | |
**kwargs | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_fbnetc(variant, channel_multiplier=1.0, pretrained=False, **kwargs): | |
""" FBNet-C | |
Paper: https://arxiv.org/abs/1812.03443 | |
Ref Impl: https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_modeldef.py | |
NOTE: the impl above does not relate to the 'C' variant here, that was derived from paper, | |
it was used to confirm some building block details | |
""" | |
arch_def = [ | |
['ir_r1_k3_s1_e1_c16'], | |
['ir_r1_k3_s2_e6_c24', 'ir_r2_k3_s1_e1_c24'], | |
['ir_r1_k5_s2_e6_c32', 'ir_r1_k5_s1_e3_c32', 'ir_r1_k5_s1_e6_c32', 'ir_r1_k3_s1_e6_c32'], | |
['ir_r1_k5_s2_e6_c64', 'ir_r1_k5_s1_e3_c64', 'ir_r2_k5_s1_e6_c64'], | |
['ir_r3_k5_s1_e6_c112', 'ir_r1_k5_s1_e3_c112'], | |
['ir_r4_k5_s2_e6_c184'], | |
['ir_r1_k3_s1_e6_c352'], | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def), | |
stem_size=16, | |
num_features=1984, # paper suggests this, but is not 100% clear | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, 'relu'), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_spnasnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates the Single-Path NAS model from search targeted for Pixel1 phone. | |
Paper: https://arxiv.org/abs/1904.02877 | |
Args: | |
channel_multiplier: multiplier to number of channels per layer. | |
""" | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s1_c16_noskip'], | |
# stage 1, 112x112 in | |
['ir_r3_k3_s2_e3_c24'], | |
# stage 2, 56x56 in | |
['ir_r1_k5_s2_e6_c40', 'ir_r3_k3_s1_e3_c40'], | |
# stage 3, 28x28 in | |
['ir_r1_k5_s2_e6_c80', 'ir_r3_k3_s1_e3_c80'], | |
# stage 4, 14x14in | |
['ir_r1_k5_s1_e6_c96', 'ir_r3_k5_s1_e3_c96'], | |
# stage 5, 14x14in | |
['ir_r4_k5_s2_e6_c192'], | |
# stage 6, 7x7 in | |
['ir_r1_k3_s1_e6_c320_noskip'] | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def), | |
stem_size=32, | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, 'relu'), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_efficientnet(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates an EfficientNet model. | |
Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py | |
Paper: https://arxiv.org/abs/1905.11946 | |
EfficientNet params | |
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) | |
'efficientnet-b0': (1.0, 1.0, 224, 0.2), | |
'efficientnet-b1': (1.0, 1.1, 240, 0.2), | |
'efficientnet-b2': (1.1, 1.2, 260, 0.3), | |
'efficientnet-b3': (1.2, 1.4, 300, 0.3), | |
'efficientnet-b4': (1.4, 1.8, 380, 0.4), | |
'efficientnet-b5': (1.6, 2.2, 456, 0.4), | |
'efficientnet-b6': (1.8, 2.6, 528, 0.5), | |
'efficientnet-b7': (2.0, 3.1, 600, 0.5), | |
'efficientnet-b8': (2.2, 3.6, 672, 0.5), | |
Args: | |
channel_multiplier: multiplier to number of channels per layer | |
depth_multiplier: multiplier to number of repeats per stage | |
""" | |
arch_def = [ | |
['ds_r1_k3_s1_e1_c16_se0.25'], | |
['ir_r2_k3_s2_e6_c24_se0.25'], | |
['ir_r2_k5_s2_e6_c40_se0.25'], | |
['ir_r3_k3_s2_e6_c80_se0.25'], | |
['ir_r3_k5_s1_e6_c112_se0.25'], | |
['ir_r4_k5_s2_e6_c192_se0.25'], | |
['ir_r1_k3_s1_e6_c320_se0.25'], | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def, depth_multiplier), | |
num_features=round_channels(1280, channel_multiplier, 8, None), | |
stem_size=32, | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, 'swish'), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs, | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_efficientnet_edge(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): | |
arch_def = [ | |
# NOTE `fc` is present to override a mismatch between stem channels and in chs not | |
# present in other models | |
['er_r1_k3_s1_e4_c24_fc24_noskip'], | |
['er_r2_k3_s2_e8_c32'], | |
['er_r4_k3_s2_e8_c48'], | |
['ir_r5_k5_s2_e8_c96'], | |
['ir_r4_k5_s1_e8_c144'], | |
['ir_r2_k5_s2_e8_c192'], | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def, depth_multiplier), | |
num_features=round_channels(1280, channel_multiplier, 8, None), | |
stem_size=32, | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, 'relu'), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs, | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_efficientnet_condconv( | |
variant, channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=1, pretrained=False, **kwargs): | |
"""Creates an efficientnet-condconv model.""" | |
arch_def = [ | |
['ds_r1_k3_s1_e1_c16_se0.25'], | |
['ir_r2_k3_s2_e6_c24_se0.25'], | |
['ir_r2_k5_s2_e6_c40_se0.25'], | |
['ir_r3_k3_s2_e6_c80_se0.25'], | |
['ir_r3_k5_s1_e6_c112_se0.25_cc4'], | |
['ir_r4_k5_s2_e6_c192_se0.25_cc4'], | |
['ir_r1_k3_s1_e6_c320_se0.25_cc4'], | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def, depth_multiplier, experts_multiplier=experts_multiplier), | |
num_features=round_channels(1280, channel_multiplier, 8, None), | |
stem_size=32, | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, 'swish'), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs, | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_efficientnet_lite(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates an EfficientNet-Lite model. | |
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite | |
Paper: https://arxiv.org/abs/1905.11946 | |
EfficientNet params | |
name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) | |
'efficientnet-lite0': (1.0, 1.0, 224, 0.2), | |
'efficientnet-lite1': (1.0, 1.1, 240, 0.2), | |
'efficientnet-lite2': (1.1, 1.2, 260, 0.3), | |
'efficientnet-lite3': (1.2, 1.4, 280, 0.3), | |
'efficientnet-lite4': (1.4, 1.8, 300, 0.3), | |
Args: | |
channel_multiplier: multiplier to number of channels per layer | |
depth_multiplier: multiplier to number of repeats per stage | |
""" | |
arch_def = [ | |
['ds_r1_k3_s1_e1_c16'], | |
['ir_r2_k3_s2_e6_c24'], | |
['ir_r2_k5_s2_e6_c40'], | |
['ir_r3_k3_s2_e6_c80'], | |
['ir_r3_k5_s1_e6_c112'], | |
['ir_r4_k5_s2_e6_c192'], | |
['ir_r1_k3_s1_e6_c320'], | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def, depth_multiplier, fix_first_last=True), | |
num_features=1280, | |
stem_size=32, | |
fix_stem=True, | |
channel_multiplier=channel_multiplier, | |
act_layer=nn.ReLU6, | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs, | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_mixnet_s(variant, channel_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates a MixNet Small model. | |
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet | |
Paper: https://arxiv.org/abs/1907.09595 | |
""" | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s1_e1_c16'], # relu | |
# stage 1, 112x112 in | |
['ir_r1_k3_a1.1_p1.1_s2_e6_c24', 'ir_r1_k3_a1.1_p1.1_s1_e3_c24'], # relu | |
# stage 2, 56x56 in | |
['ir_r1_k3.5.7_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], # swish | |
# stage 3, 28x28 in | |
['ir_r1_k3.5.7_p1.1_s2_e6_c80_se0.25_nsw', 'ir_r2_k3.5_p1.1_s1_e6_c80_se0.25_nsw'], # swish | |
# stage 4, 14x14in | |
['ir_r1_k3.5.7_a1.1_p1.1_s1_e6_c120_se0.5_nsw', 'ir_r2_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], # swish | |
# stage 5, 14x14in | |
['ir_r1_k3.5.7.9.11_s2_e6_c200_se0.5_nsw', 'ir_r2_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], # swish | |
# 7x7 | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def), | |
num_features=1536, | |
stem_size=16, | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, 'relu'), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def _gen_mixnet_m(variant, channel_multiplier=1.0, depth_multiplier=1.0, pretrained=False, **kwargs): | |
"""Creates a MixNet Medium-Large model. | |
Ref impl: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet | |
Paper: https://arxiv.org/abs/1907.09595 | |
""" | |
arch_def = [ | |
# stage 0, 112x112 in | |
['ds_r1_k3_s1_e1_c24'], # relu | |
# stage 1, 112x112 in | |
['ir_r1_k3.5.7_a1.1_p1.1_s2_e6_c32', 'ir_r1_k3_a1.1_p1.1_s1_e3_c32'], # relu | |
# stage 2, 56x56 in | |
['ir_r1_k3.5.7.9_s2_e6_c40_se0.5_nsw', 'ir_r3_k3.5_a1.1_p1.1_s1_e6_c40_se0.5_nsw'], # swish | |
# stage 3, 28x28 in | |
['ir_r1_k3.5.7_s2_e6_c80_se0.25_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e6_c80_se0.25_nsw'], # swish | |
# stage 4, 14x14in | |
['ir_r1_k3_s1_e6_c120_se0.5_nsw', 'ir_r3_k3.5.7.9_a1.1_p1.1_s1_e3_c120_se0.5_nsw'], # swish | |
# stage 5, 14x14in | |
['ir_r1_k3.5.7.9_s2_e6_c200_se0.5_nsw', 'ir_r3_k3.5.7.9_p1.1_s1_e6_c200_se0.5_nsw'], # swish | |
# 7x7 | |
] | |
with layer_config_kwargs(kwargs): | |
model_kwargs = dict( | |
block_args=decode_arch_def(arch_def, depth_multiplier, depth_trunc='round'), | |
num_features=1536, | |
stem_size=24, | |
channel_multiplier=channel_multiplier, | |
act_layer=resolve_act_layer(kwargs, 'relu'), | |
norm_kwargs=resolve_bn_args(kwargs), | |
**kwargs | |
) | |
model = _create_model(model_kwargs, variant, pretrained) | |
return model | |
def mnasnet_050(pretrained=False, **kwargs): | |
""" MNASNet B1, depth multiplier of 0.5. """ | |
model = _gen_mnasnet_b1('mnasnet_050', 0.5, pretrained=pretrained, **kwargs) | |
return model | |
def mnasnet_075(pretrained=False, **kwargs): | |
""" MNASNet B1, depth multiplier of 0.75. """ | |
model = _gen_mnasnet_b1('mnasnet_075', 0.75, pretrained=pretrained, **kwargs) | |
return model | |
def mnasnet_100(pretrained=False, **kwargs): | |
""" MNASNet B1, depth multiplier of 1.0. """ | |
model = _gen_mnasnet_b1('mnasnet_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mnasnet_b1(pretrained=False, **kwargs): | |
""" MNASNet B1, depth multiplier of 1.0. """ | |
return mnasnet_100(pretrained, **kwargs) | |
def mnasnet_140(pretrained=False, **kwargs): | |
""" MNASNet B1, depth multiplier of 1.4 """ | |
model = _gen_mnasnet_b1('mnasnet_140', 1.4, pretrained=pretrained, **kwargs) | |
return model | |
def semnasnet_050(pretrained=False, **kwargs): | |
""" MNASNet A1 (w/ SE), depth multiplier of 0.5 """ | |
model = _gen_mnasnet_a1('semnasnet_050', 0.5, pretrained=pretrained, **kwargs) | |
return model | |
def semnasnet_075(pretrained=False, **kwargs): | |
""" MNASNet A1 (w/ SE), depth multiplier of 0.75. """ | |
model = _gen_mnasnet_a1('semnasnet_075', 0.75, pretrained=pretrained, **kwargs) | |
return model | |
def semnasnet_100(pretrained=False, **kwargs): | |
""" MNASNet A1 (w/ SE), depth multiplier of 1.0. """ | |
model = _gen_mnasnet_a1('semnasnet_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mnasnet_a1(pretrained=False, **kwargs): | |
""" MNASNet A1 (w/ SE), depth multiplier of 1.0. """ | |
return semnasnet_100(pretrained, **kwargs) | |
def semnasnet_140(pretrained=False, **kwargs): | |
""" MNASNet A1 (w/ SE), depth multiplier of 1.4. """ | |
model = _gen_mnasnet_a1('semnasnet_140', 1.4, pretrained=pretrained, **kwargs) | |
return model | |
def mnasnet_small(pretrained=False, **kwargs): | |
""" MNASNet Small, depth multiplier of 1.0. """ | |
model = _gen_mnasnet_small('mnasnet_small', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv2_100(pretrained=False, **kwargs): | |
""" MobileNet V2 w/ 1.0 channel multiplier """ | |
model = _gen_mobilenet_v2('mobilenetv2_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv2_140(pretrained=False, **kwargs): | |
""" MobileNet V2 w/ 1.4 channel multiplier """ | |
model = _gen_mobilenet_v2('mobilenetv2_140', 1.4, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv2_110d(pretrained=False, **kwargs): | |
""" MobileNet V2 w/ 1.1 channel, 1.2 depth multipliers""" | |
model = _gen_mobilenet_v2( | |
'mobilenetv2_110d', 1.1, depth_multiplier=1.2, fix_stem_head=True, pretrained=pretrained, **kwargs) | |
return model | |
def mobilenetv2_120d(pretrained=False, **kwargs): | |
""" MobileNet V2 w/ 1.2 channel, 1.4 depth multipliers """ | |
model = _gen_mobilenet_v2( | |
'mobilenetv2_120d', 1.2, depth_multiplier=1.4, fix_stem_head=True, pretrained=pretrained, **kwargs) | |
return model | |
def fbnetc_100(pretrained=False, **kwargs): | |
""" FBNet-C """ | |
if pretrained: | |
# pretrained model trained with non-default BN epsilon | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
model = _gen_fbnetc('fbnetc_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def spnasnet_100(pretrained=False, **kwargs): | |
""" Single-Path NAS Pixel1""" | |
model = _gen_spnasnet('spnasnet_100', 1.0, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_b0(pretrained=False, **kwargs): | |
""" EfficientNet-B0 """ | |
# NOTE for train set drop_rate=0.2, drop_connect_rate=0.2 | |
model = _gen_efficientnet( | |
'efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_b1(pretrained=False, **kwargs): | |
""" EfficientNet-B1 """ | |
# NOTE for train set drop_rate=0.2, drop_connect_rate=0.2 | |
model = _gen_efficientnet( | |
'efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_b2(pretrained=False, **kwargs): | |
""" EfficientNet-B2 """ | |
# NOTE for train set drop_rate=0.3, drop_connect_rate=0.2 | |
model = _gen_efficientnet( | |
'efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_b3(pretrained=False, **kwargs): | |
""" EfficientNet-B3 """ | |
# NOTE for train set drop_rate=0.3, drop_connect_rate=0.2 | |
model = _gen_efficientnet( | |
'efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_b4(pretrained=False, **kwargs): | |
""" EfficientNet-B4 """ | |
# NOTE for train set drop_rate=0.4, drop_connect_rate=0.2 | |
model = _gen_efficientnet( | |
'efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_b5(pretrained=False, **kwargs): | |
""" EfficientNet-B5 """ | |
# NOTE for train set drop_rate=0.4, drop_connect_rate=0.2 | |
model = _gen_efficientnet( | |
'efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_b6(pretrained=False, **kwargs): | |
""" EfficientNet-B6 """ | |
# NOTE for train set drop_rate=0.5, drop_connect_rate=0.2 | |
model = _gen_efficientnet( | |
'efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_b7(pretrained=False, **kwargs): | |
""" EfficientNet-B7 """ | |
# NOTE for train set drop_rate=0.5, drop_connect_rate=0.2 | |
model = _gen_efficientnet( | |
'efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_b8(pretrained=False, **kwargs): | |
""" EfficientNet-B8 """ | |
# NOTE for train set drop_rate=0.5, drop_connect_rate=0.2 | |
model = _gen_efficientnet( | |
'efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_l2(pretrained=False, **kwargs): | |
""" EfficientNet-L2. """ | |
# NOTE for train, drop_rate should be 0.5 | |
model = _gen_efficientnet( | |
'efficientnet_l2', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_es(pretrained=False, **kwargs): | |
""" EfficientNet-Edge Small. """ | |
model = _gen_efficientnet_edge( | |
'efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_em(pretrained=False, **kwargs): | |
""" EfficientNet-Edge-Medium. """ | |
model = _gen_efficientnet_edge( | |
'efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_el(pretrained=False, **kwargs): | |
""" EfficientNet-Edge-Large. """ | |
model = _gen_efficientnet_edge( | |
'efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_cc_b0_4e(pretrained=False, **kwargs): | |
""" EfficientNet-CondConv-B0 w/ 8 Experts """ | |
# NOTE for train set drop_rate=0.25, drop_connect_rate=0.2 | |
model = _gen_efficientnet_condconv( | |
'efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_cc_b0_8e(pretrained=False, **kwargs): | |
""" EfficientNet-CondConv-B0 w/ 8 Experts """ | |
# NOTE for train set drop_rate=0.25, drop_connect_rate=0.2 | |
model = _gen_efficientnet_condconv( | |
'efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, | |
pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_cc_b1_8e(pretrained=False, **kwargs): | |
""" EfficientNet-CondConv-B1 w/ 8 Experts """ | |
# NOTE for train set drop_rate=0.25, drop_connect_rate=0.2 | |
model = _gen_efficientnet_condconv( | |
'efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, | |
pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_lite0(pretrained=False, **kwargs): | |
""" EfficientNet-Lite0 """ | |
model = _gen_efficientnet_lite( | |
'efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_lite1(pretrained=False, **kwargs): | |
""" EfficientNet-Lite1 """ | |
model = _gen_efficientnet_lite( | |
'efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_lite2(pretrained=False, **kwargs): | |
""" EfficientNet-Lite2 """ | |
model = _gen_efficientnet_lite( | |
'efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_lite3(pretrained=False, **kwargs): | |
""" EfficientNet-Lite3 """ | |
model = _gen_efficientnet_lite( | |
'efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) | |
return model | |
def efficientnet_lite4(pretrained=False, **kwargs): | |
""" EfficientNet-Lite4 """ | |
model = _gen_efficientnet_lite( | |
'efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b0(pretrained=False, **kwargs): | |
""" EfficientNet-B0 AutoAug. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b1(pretrained=False, **kwargs): | |
""" EfficientNet-B1 AutoAug. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b2(pretrained=False, **kwargs): | |
""" EfficientNet-B2 AutoAug. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b3(pretrained=False, **kwargs): | |
""" EfficientNet-B3 AutoAug. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b4(pretrained=False, **kwargs): | |
""" EfficientNet-B4 AutoAug. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b5(pretrained=False, **kwargs): | |
""" EfficientNet-B5 RandAug. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b5', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b6(pretrained=False, **kwargs): | |
""" EfficientNet-B6 AutoAug. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b6', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b7(pretrained=False, **kwargs): | |
""" EfficientNet-B7 RandAug. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b7', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b8(pretrained=False, **kwargs): | |
""" EfficientNet-B8 RandAug. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b8', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b0_ap(pretrained=False, **kwargs): | |
""" EfficientNet-B0 AdvProp. Tensorflow compatible variant | |
Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b0_ap', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b1_ap(pretrained=False, **kwargs): | |
""" EfficientNet-B1 AdvProp. Tensorflow compatible variant | |
Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b1_ap', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b2_ap(pretrained=False, **kwargs): | |
""" EfficientNet-B2 AdvProp. Tensorflow compatible variant | |
Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b2_ap', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b3_ap(pretrained=False, **kwargs): | |
""" EfficientNet-B3 AdvProp. Tensorflow compatible variant | |
Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b3_ap', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b4_ap(pretrained=False, **kwargs): | |
""" EfficientNet-B4 AdvProp. Tensorflow compatible variant | |
Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b4_ap', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b5_ap(pretrained=False, **kwargs): | |
""" EfficientNet-B5 AdvProp. Tensorflow compatible variant | |
Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b5_ap', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b6_ap(pretrained=False, **kwargs): | |
""" EfficientNet-B6 AdvProp. Tensorflow compatible variant | |
Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665) | |
""" | |
# NOTE for train, drop_rate should be 0.5 | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b6_ap', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b7_ap(pretrained=False, **kwargs): | |
""" EfficientNet-B7 AdvProp. Tensorflow compatible variant | |
Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665) | |
""" | |
# NOTE for train, drop_rate should be 0.5 | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b7_ap', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b8_ap(pretrained=False, **kwargs): | |
""" EfficientNet-B8 AdvProp. Tensorflow compatible variant | |
Paper: Adversarial Examples Improve Image Recognition (https://arxiv.org/abs/1911.09665) | |
""" | |
# NOTE for train, drop_rate should be 0.5 | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b8_ap', channel_multiplier=2.2, depth_multiplier=3.6, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b0_ns(pretrained=False, **kwargs): | |
""" EfficientNet-B0 NoisyStudent. Tensorflow compatible variant | |
Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b0_ns', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b1_ns(pretrained=False, **kwargs): | |
""" EfficientNet-B1 NoisyStudent. Tensorflow compatible variant | |
Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b1_ns', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b2_ns(pretrained=False, **kwargs): | |
""" EfficientNet-B2 NoisyStudent. Tensorflow compatible variant | |
Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b2_ns', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b3_ns(pretrained=False, **kwargs): | |
""" EfficientNet-B3 NoisyStudent. Tensorflow compatible variant | |
Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b3_ns', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b4_ns(pretrained=False, **kwargs): | |
""" EfficientNet-B4 NoisyStudent. Tensorflow compatible variant | |
Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b4_ns', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b5_ns(pretrained=False, **kwargs): | |
""" EfficientNet-B5 NoisyStudent. Tensorflow compatible variant | |
Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252) | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b5_ns', channel_multiplier=1.6, depth_multiplier=2.2, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b6_ns(pretrained=False, **kwargs): | |
""" EfficientNet-B6 NoisyStudent. Tensorflow compatible variant | |
Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252) | |
""" | |
# NOTE for train, drop_rate should be 0.5 | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b6_ns', channel_multiplier=1.8, depth_multiplier=2.6, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_b7_ns(pretrained=False, **kwargs): | |
""" EfficientNet-B7 NoisyStudent. Tensorflow compatible variant | |
Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252) | |
""" | |
# NOTE for train, drop_rate should be 0.5 | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_b7_ns', channel_multiplier=2.0, depth_multiplier=3.1, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_l2_ns_475(pretrained=False, **kwargs): | |
""" EfficientNet-L2 NoisyStudent @ 475x475. Tensorflow compatible variant | |
Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252) | |
""" | |
# NOTE for train, drop_rate should be 0.5 | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_l2_ns_475', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_l2_ns(pretrained=False, **kwargs): | |
""" EfficientNet-L2 NoisyStudent. Tensorflow compatible variant | |
Paper: Self-training with Noisy Student improves ImageNet classification (https://arxiv.org/abs/1911.04252) | |
""" | |
# NOTE for train, drop_rate should be 0.5 | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet( | |
'tf_efficientnet_l2_ns', channel_multiplier=4.3, depth_multiplier=5.3, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_es(pretrained=False, **kwargs): | |
""" EfficientNet-Edge Small. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet_edge( | |
'tf_efficientnet_es', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_em(pretrained=False, **kwargs): | |
""" EfficientNet-Edge-Medium. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet_edge( | |
'tf_efficientnet_em', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_el(pretrained=False, **kwargs): | |
""" EfficientNet-Edge-Large. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet_edge( | |
'tf_efficientnet_el', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_cc_b0_4e(pretrained=False, **kwargs): | |
""" EfficientNet-CondConv-B0 w/ 4 Experts """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet_condconv( | |
'tf_efficientnet_cc_b0_4e', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_cc_b0_8e(pretrained=False, **kwargs): | |
""" EfficientNet-CondConv-B0 w/ 8 Experts """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet_condconv( | |
'tf_efficientnet_cc_b0_8e', channel_multiplier=1.0, depth_multiplier=1.0, experts_multiplier=2, | |
pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_cc_b1_8e(pretrained=False, **kwargs): | |
""" EfficientNet-CondConv-B1 w/ 8 Experts """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet_condconv( | |
'tf_efficientnet_cc_b1_8e', channel_multiplier=1.0, depth_multiplier=1.1, experts_multiplier=2, | |
pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_lite0(pretrained=False, **kwargs): | |
""" EfficientNet-Lite0. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet_lite( | |
'tf_efficientnet_lite0', channel_multiplier=1.0, depth_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_lite1(pretrained=False, **kwargs): | |
""" EfficientNet-Lite1. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet_lite( | |
'tf_efficientnet_lite1', channel_multiplier=1.0, depth_multiplier=1.1, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_lite2(pretrained=False, **kwargs): | |
""" EfficientNet-Lite2. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet_lite( | |
'tf_efficientnet_lite2', channel_multiplier=1.1, depth_multiplier=1.2, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_lite3(pretrained=False, **kwargs): | |
""" EfficientNet-Lite3. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet_lite( | |
'tf_efficientnet_lite3', channel_multiplier=1.2, depth_multiplier=1.4, pretrained=pretrained, **kwargs) | |
return model | |
def tf_efficientnet_lite4(pretrained=False, **kwargs): | |
""" EfficientNet-Lite4. Tensorflow compatible variant """ | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_efficientnet_lite( | |
'tf_efficientnet_lite4', channel_multiplier=1.4, depth_multiplier=1.8, pretrained=pretrained, **kwargs) | |
return model | |
def mixnet_s(pretrained=False, **kwargs): | |
"""Creates a MixNet Small model. | |
""" | |
# NOTE for train set drop_rate=0.2 | |
model = _gen_mixnet_s( | |
'mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mixnet_m(pretrained=False, **kwargs): | |
"""Creates a MixNet Medium model. | |
""" | |
# NOTE for train set drop_rate=0.25 | |
model = _gen_mixnet_m( | |
'mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def mixnet_l(pretrained=False, **kwargs): | |
"""Creates a MixNet Large model. | |
""" | |
# NOTE for train set drop_rate=0.25 | |
model = _gen_mixnet_m( | |
'mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) | |
return model | |
def mixnet_xl(pretrained=False, **kwargs): | |
"""Creates a MixNet Extra-Large model. | |
Not a paper spec, experimental def by RW w/ depth scaling. | |
""" | |
# NOTE for train set drop_rate=0.25, drop_connect_rate=0.2 | |
model = _gen_mixnet_m( | |
'mixnet_xl', channel_multiplier=1.6, depth_multiplier=1.2, pretrained=pretrained, **kwargs) | |
return model | |
def mixnet_xxl(pretrained=False, **kwargs): | |
"""Creates a MixNet Double Extra Large model. | |
Not a paper spec, experimental def by RW w/ depth scaling. | |
""" | |
# NOTE for train set drop_rate=0.3, drop_connect_rate=0.2 | |
model = _gen_mixnet_m( | |
'mixnet_xxl', channel_multiplier=2.4, depth_multiplier=1.3, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mixnet_s(pretrained=False, **kwargs): | |
"""Creates a MixNet Small model. Tensorflow compatible variant | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mixnet_s( | |
'tf_mixnet_s', channel_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mixnet_m(pretrained=False, **kwargs): | |
"""Creates a MixNet Medium model. Tensorflow compatible variant | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mixnet_m( | |
'tf_mixnet_m', channel_multiplier=1.0, pretrained=pretrained, **kwargs) | |
return model | |
def tf_mixnet_l(pretrained=False, **kwargs): | |
"""Creates a MixNet Large model. Tensorflow compatible variant | |
""" | |
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT | |
kwargs['pad_type'] = 'same' | |
model = _gen_mixnet_m( | |
'tf_mixnet_l', channel_multiplier=1.3, pretrained=pretrained, **kwargs) | |
return model | |