File size: 11,686 Bytes
9dfa4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c84520
9dfa4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c84520
9dfa4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5a71d2
9dfa4de
3c84520
9dfa4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5a71d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dfa4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65d11db
9dfa4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a852fbd
9dfa4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53a077e
9dfa4de
 
 
a5a71d2
9dfa4de
a5a71d2
9dfa4de
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------

import functools
import os

import gradio as gr
import numpy as np
import torch as torch
from PIL import Image

import spaces

import diffusers

from stablenormal.pipeline_yoso_normal import YOSONormalsPipeline
from stablenormal.pipeline_stablenormal import StableNormalPipeline
from stablenormal.scheduler.heuristics_ddimsampler import HEURI_DDIMScheduler

from data_utils import HWC3, resize_image

import sys
import cv2
sys.path.append('./geowizard')
from models.geowizard_pipeline import DepthNormalEstimationPipeline

class Geowizard(object):
    '''
    Simple Stable Diffusion Package
    '''

    def __init__(self):
        self.model = DepthNormalEstimationPipeline.from_pretrained("lemonaddie/Geowizard", torch_dtype=torch.float16)

    def cuda(self):
       self.model.cuda()
       return self

    def cpu(self):
       self.model.cpu()
       return self

    def float(self):
       self.model.float()
       return self

    def to(self, device):
       self.model.to(device)
       return self

    def eval(self):
        self.model.eval()

        return self

    def train(self):
        self.model.train()
        return self

    @torch.no_grad()
    def __call__(self, img, image_resolution=768):

        pipe_out = self.model(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)),
            denoising_steps = 10,
            ensemble_size= 1,
            processing_res = image_resolution,
            match_input_res = True,
            domain = "indoor",
            color_map = "Spectral",
            show_progress_bar = False,
        )
        pred_normal = pipe_out.normal_np
        pred_normal = (pred_normal + 1) / 2 * 255
        pred_normal = pred_normal.astype(np.uint8)


        return pred_normal


    def __repr__(self):

        return f"model: \n{self.model}"

class Marigold(Geowizard):
    '''
    Simple Stable Diffusion Package
    '''

    def __init__(self):
        self.model= diffusers.MarigoldNormalsPipeline.from_pretrained("prs-eth/marigold-normals-v0-1", torch_dtype=torch.float16)


    @torch.no_grad()
    def __call__(self, img, image_resolution=768):

        pipe_out = self.model(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)))
        pred_normal = pipe_out.prediction[0]
        pred_normal[..., 0] = -pred_normal[..., 0]

        pred_normal = (pred_normal + 1) / 2 * 255
        pred_normal = pred_normal.astype(np.uint8)


        return pred_normal



    def __repr__(self):

        return f"model: \n{self.model}"

class StableNormal(Geowizard):
    '''
    Simple Stable Diffusion Package
    '''

    def __init__(self):
        x_start_pipeline = YOSONormalsPipeline.from_pretrained('Stable-X/yoso-normal-v0-3',  trust_remote_code=True,
                                                                variant="fp16", torch_dtype=torch.float16)
        self.model = StableNormalPipeline.from_pretrained('Stable-X/stable-normal-v0-1', trust_remote_code=True,
                                                           variant="fp16",  torch_dtype=torch.float16,
                                                          scheduler=HEURI_DDIMScheduler(prediction_type='sample', 
                                                                              beta_start=0.00085, beta_end=0.0120, 
                                                                              beta_schedule = "scaled_linear"))
        # two stage concat
        self.model.x_start_pipeline = x_start_pipeline
        self.model.x_start_pipeline.to('cuda', torch.float16)
        self.model.prior.to('cuda', torch.float16)


    @torch.no_grad()
    def __call__(self, img, image_resolution=768):
        pipe_out = self.model(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)))
        pred_normal = pipe_out.prediction[0]
        pred_normal = (pred_normal + 1) / 2 * 255
        pred_normal = pred_normal.astype(np.uint8)

        return pred_normal

    def to(self, device):
        self.model.to(device, torch.float16)



    def __repr__(self):

        return f"model: \n{self.model}"

class YosoNormal(Geowizard):
    def __init__(self):
        self.model = YOSONormalsPipeline.from_pretrained('Stable-X/yoso-normal-v0-3',  trust_remote_code=True,
                                                                variant="fp16", torch_dtype=torch.float16, t_start=0)
        
        # two stage concat
        self.model.x_start_pipeline = x_start_pipeline
        self.model.x_start_pipeline.to('cuda', torch.float16)
        self.model.prior.to('cuda', torch.float16)


    @torch.no_grad()
    def __call__(self, img, image_resolution=768):
        pipe_out = self.model(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)))
        pred_normal = pipe_out.prediction[0]
        pred_normal = (pred_normal + 1) / 2 * 255
        pred_normal = pred_normal.astype(np.uint8)

        return pred_normal

    def to(self, device):
        self.model.to(device, torch.float16)

    def __repr__(self):

        return f"model: \n{self.model}"

class DSINE(object):
    '''
    Simple Stable Diffusion Package
    '''

    def __init__(self):
        self.model = torch.hub.load("hugoycj/DSINE-hub", "DSINE", local_file_path='./models/dsine.pt', trust_repo=True)

    def cuda(self):
       self.model.cuda()
       return self

    def float(self):
       self.model.float()
       return self

    def to(self, device):
       self.model.to(device)
       return self

    def eval(self):
        self.model.eval()

        return self

    def train(self):
        self.model.train()
        return self

    @torch.no_grad()
    def __call__(self, img, image_resolution=768):
        pred_normal = self.model.infer_cv2(img)[0] # (3, H, W)
        pred_normal = (pred_normal + 1) / 2 * 255
        pred_normal = pred_normal.cpu().numpy().transpose(1, 2, 0)

        # rgb
        pred_normal = pred_normal.astype(np.uint8)

        return pred_normal


    def __repr__(self):

        return f"model: \n{self.model}"


def process(
    pipe_list,
    path_input,
):
    names = ['DSINE', 'Marigold', 'GeoWizard', 'StableNormal']

    path_out_vis_list = []
    for pipe in pipe_list:

        try:
            pipe.to('cuda')
        except:
            pass

        img  = cv2.imread(path_input)
        raw_input_image = HWC3(img)
        ori_H, ori_W, _ = raw_input_image.shape

        img = resize_image(raw_input_image, 768)

        pipe_out = pipe(
            img,
            768,
        )
        pred_normal= cv2.resize(pipe_out, (ori_W, ori_H))
        path_out_vis_list.append(Image.fromarray(pred_normal))
        
        try:
            pipe.to('cpu')
        except:
            pass
            
        _output = path_out_vis_list + [None] * (4 - len(path_out_vis_list))
        yield _output

def run_demo_server(pipe):
    process_pipe = spaces.GPU(functools.partial(process, pipe), duration=120)
    os.environ["GRADIO_ALLOW_FLAGGING"] = "never"

    with gr.Blocks(
        analytics_enabled=False,
        title="Normal Estimation Arena",
        css="""
            #download {
                height: 118px;
            }
            .slider .inner {
                width: 5px;
                background: #FFF;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
        """,
    ) as demo:

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    label="Input Image",
                    type="filepath",
                    height=256,
                )
            with gr.Column():
                submit_btn = gr.Button(value="Compute normal", variant="primary")
                clear_btn = gr.Button(value="Clear")
        with gr.Row():
            with gr.Column():
                DSINE_output_slider = gr.Image(
                    label="DSINE",
                    type="filepath",
                )
            with gr.Column():
                marigold_output_slider = gr.Image(
                    label="Marigold",
                    type="filepath",
                )
        with gr.Row():  
            with gr.Column():
                geowizard_output_slider = gr.Image(
                    label="Geowizard",
                    type="filepath",
                )
            with gr.Column():
                Ours_slider = gr.Image(
                    label="StableNormal",
                    type="filepath",
                )

        outputs = [
            DSINE_output_slider,
            marigold_output_slider,
            geowizard_output_slider,
            Ours_slider,
        ]

        submit_btn.click(
            fn=process_pipe,
            inputs=input_image,
            outputs=outputs,
            concurrency_limit=1,
        )

        gr.Examples(
            fn=process_pipe,
            examples=sorted([
                        os.path.join("files", "images", name)
                        for name in os.listdir(os.path.join("files", "images"))
                    ]),
            inputs=input_image,
            outputs=outputs,
            cache_examples=False,
        )

        def clear_fn():
            out = []
            out += [
                gr.Button(interactive=True),
                gr.Button(interactive=True),
                gr.Image(value=None, interactive=True),
                None,
                None,
                None,
                None,
                None,
                None,
            ]
            return out

        clear_btn.click(
            fn=clear_fn,
            inputs=[],
            outputs=
            [
                submit_btn,
                input_image,
                marigold_output_slider,
                geowizard_output_slider,
                DSINE_output_slider,
                Ours_slider,
            ],
        )


        demo.queue(
            api_open=False,
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False
        )


def main():

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    dsine_pipe = DSINE()
    marigold_pipe = Marigold()
    geowizard_pipe = Geowizard()
    our_pipe = StableNormal()
    yoso_pipe = YosoNormal()

    run_demo_server([dsine_pipe, marigold_pipe, geowizard_pipe, our_pipe, yoso_pipe])


if __name__ == "__main__":
    main()