File size: 26,514 Bytes
53a077e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
""" EfficientNet / MobileNetV3 Blocks and Builder

Copyright 2020 Ross Wightman
"""
import re
from copy import deepcopy

from .conv2d_layers import *
from geffnet.activations import *

__all__ = ['get_bn_args_tf', 'resolve_bn_args', 'resolve_se_args', 'resolve_act_layer', 'make_divisible',
           'round_channels', 'drop_connect', 'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv',
           'InvertedResidual', 'CondConvResidual', 'EdgeResidual', 'EfficientNetBuilder', 'decode_arch_def',
           'initialize_weight_default', 'initialize_weight_goog', 'BN_MOMENTUM_TF_DEFAULT', 'BN_EPS_TF_DEFAULT'
]

# Defaults used for Google/Tensorflow training of mobile networks /w RMSprop as per
# papers and TF reference implementations. PT momentum equiv for TF decay is (1 - TF decay)
# NOTE: momentum varies btw .99 and .9997 depending on source
# .99 in official TF TPU impl
# .9997 (/w .999 in search space) for paper
#
# PyTorch defaults are momentum = .1, eps = 1e-5
#
BN_MOMENTUM_TF_DEFAULT = 1 - 0.99
BN_EPS_TF_DEFAULT = 1e-3
_BN_ARGS_TF = dict(momentum=BN_MOMENTUM_TF_DEFAULT, eps=BN_EPS_TF_DEFAULT)


def get_bn_args_tf():
    return _BN_ARGS_TF.copy()


def resolve_bn_args(kwargs):
    bn_args = get_bn_args_tf() if kwargs.pop('bn_tf', False) else {}
    bn_momentum = kwargs.pop('bn_momentum', None)
    if bn_momentum is not None:
        bn_args['momentum'] = bn_momentum
    bn_eps = kwargs.pop('bn_eps', None)
    if bn_eps is not None:
        bn_args['eps'] = bn_eps
    return bn_args


_SE_ARGS_DEFAULT = dict(
    gate_fn=sigmoid,
    act_layer=None,  # None == use containing block's activation layer
    reduce_mid=False,
    divisor=1)


def resolve_se_args(kwargs, in_chs, act_layer=None):
    se_kwargs = kwargs.copy() if kwargs is not None else {}
    # fill in args that aren't specified with the defaults
    for k, v in _SE_ARGS_DEFAULT.items():
        se_kwargs.setdefault(k, v)
    # some models, like MobilNetV3, calculate SE reduction chs from the containing block's mid_ch instead of in_ch
    if not se_kwargs.pop('reduce_mid'):
        se_kwargs['reduced_base_chs'] = in_chs
    # act_layer override, if it remains None, the containing block's act_layer will be used
    if se_kwargs['act_layer'] is None:
        assert act_layer is not None
        se_kwargs['act_layer'] = act_layer
    return se_kwargs


def resolve_act_layer(kwargs, default='relu'):
    act_layer = kwargs.pop('act_layer', default)
    if isinstance(act_layer, str):
        act_layer = get_act_layer(act_layer)
    return act_layer


def make_divisible(v: int, divisor: int = 8, min_value: int = None):
    min_value = min_value or divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:  # ensure round down does not go down by more than 10%.
        new_v += divisor
    return new_v


def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None):
    """Round number of filters based on depth multiplier."""
    if not multiplier:
        return channels
    channels *= multiplier
    return make_divisible(channels, divisor, channel_min)


def drop_connect(inputs, training: bool = False, drop_connect_rate: float = 0.):
    """Apply drop connect."""
    if not training:
        return inputs

    keep_prob = 1 - drop_connect_rate
    random_tensor = keep_prob + torch.rand(
        (inputs.size()[0], 1, 1, 1), dtype=inputs.dtype, device=inputs.device)
    random_tensor.floor_()  # binarize
    output = inputs.div(keep_prob) * random_tensor
    return output


class SqueezeExcite(nn.Module):

    def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None, act_layer=nn.ReLU, gate_fn=sigmoid, divisor=1):
        super(SqueezeExcite, self).__init__()
        reduced_chs = make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
        self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
        self.act1 = act_layer(inplace=True)
        self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
        self.gate_fn = gate_fn

    def forward(self, x):
        x_se = x.mean((2, 3), keepdim=True)
        x_se = self.conv_reduce(x_se)
        x_se = self.act1(x_se)
        x_se = self.conv_expand(x_se)
        x = x * self.gate_fn(x_se)
        return x


class ConvBnAct(nn.Module):
    def __init__(self, in_chs, out_chs, kernel_size,
                 stride=1, pad_type='', act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, norm_kwargs=None):
        super(ConvBnAct, self).__init__()
        assert stride in [1, 2]
        norm_kwargs = norm_kwargs or {}
        self.conv = select_conv2d(in_chs, out_chs, kernel_size, stride=stride, padding=pad_type)
        self.bn1 = norm_layer(out_chs, **norm_kwargs)
        self.act1 = act_layer(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn1(x)
        x = self.act1(x)
        return x


class DepthwiseSeparableConv(nn.Module):
    """ DepthwiseSeparable block
    Used for DS convs in MobileNet-V1 and in the place of IR blocks with an expansion
    factor of 1.0. This is an alternative to having a IR with optional first pw conv.
    """
    def __init__(self, in_chs, out_chs, dw_kernel_size=3,
                 stride=1, pad_type='', act_layer=nn.ReLU, noskip=False,
                 pw_kernel_size=1, pw_act=False, se_ratio=0., se_kwargs=None,
                 norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_connect_rate=0.):
        super(DepthwiseSeparableConv, self).__init__()
        assert stride in [1, 2]
        norm_kwargs = norm_kwargs or {}
        self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip
        self.drop_connect_rate = drop_connect_rate

        self.conv_dw = select_conv2d(
            in_chs, in_chs, dw_kernel_size, stride=stride, padding=pad_type, depthwise=True)
        self.bn1 = norm_layer(in_chs, **norm_kwargs)
        self.act1 = act_layer(inplace=True)

        # Squeeze-and-excitation
        if se_ratio is not None and se_ratio > 0.:
            se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
            self.se = SqueezeExcite(in_chs, se_ratio=se_ratio, **se_kwargs)
        else:
            self.se = nn.Identity()

        self.conv_pw = select_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type)
        self.bn2 = norm_layer(out_chs, **norm_kwargs)
        self.act2 = act_layer(inplace=True) if pw_act else nn.Identity()

    def forward(self, x):
        residual = x

        x = self.conv_dw(x)
        x = self.bn1(x)
        x = self.act1(x)

        x = self.se(x)

        x = self.conv_pw(x)
        x = self.bn2(x)
        x = self.act2(x)

        if self.has_residual:
            if self.drop_connect_rate > 0.:
                x = drop_connect(x, self.training, self.drop_connect_rate)
            x += residual
        return x


class InvertedResidual(nn.Module):
    """ Inverted residual block w/ optional SE"""

    def __init__(self, in_chs, out_chs, dw_kernel_size=3,
                 stride=1, pad_type='', act_layer=nn.ReLU, noskip=False,
                 exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1,
                 se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
                 conv_kwargs=None, drop_connect_rate=0.):
        super(InvertedResidual, self).__init__()
        norm_kwargs = norm_kwargs or {}
        conv_kwargs = conv_kwargs or {}
        mid_chs: int = make_divisible(in_chs * exp_ratio)
        self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
        self.drop_connect_rate = drop_connect_rate

        # Point-wise expansion
        self.conv_pw = select_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs)
        self.bn1 = norm_layer(mid_chs, **norm_kwargs)
        self.act1 = act_layer(inplace=True)

        # Depth-wise convolution
        self.conv_dw = select_conv2d(
            mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=pad_type, depthwise=True, **conv_kwargs)
        self.bn2 = norm_layer(mid_chs, **norm_kwargs)
        self.act2 = act_layer(inplace=True)

        # Squeeze-and-excitation
        if se_ratio is not None and se_ratio > 0.:
            se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
            self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs)
        else:
            self.se = nn.Identity()  # for jit.script compat

        # Point-wise linear projection
        self.conv_pwl = select_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs)
        self.bn3 = norm_layer(out_chs, **norm_kwargs)

    def forward(self, x):
        residual = x

        # Point-wise expansion
        x = self.conv_pw(x)
        x = self.bn1(x)
        x = self.act1(x)

        # Depth-wise convolution
        x = self.conv_dw(x)
        x = self.bn2(x)
        x = self.act2(x)

        # Squeeze-and-excitation
        x = self.se(x)

        # Point-wise linear projection
        x = self.conv_pwl(x)
        x = self.bn3(x)

        if self.has_residual:
            if self.drop_connect_rate > 0.:
                x = drop_connect(x, self.training, self.drop_connect_rate)
            x += residual
        return x


class CondConvResidual(InvertedResidual):
    """ Inverted residual block w/ CondConv routing"""

    def __init__(self, in_chs, out_chs, dw_kernel_size=3,
                 stride=1, pad_type='', act_layer=nn.ReLU, noskip=False,
                 exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1,
                 se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
                 num_experts=0, drop_connect_rate=0.):

        self.num_experts = num_experts
        conv_kwargs = dict(num_experts=self.num_experts)

        super(CondConvResidual, self).__init__(
            in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, pad_type=pad_type,
            act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size,
            pw_kernel_size=pw_kernel_size, se_ratio=se_ratio, se_kwargs=se_kwargs,
            norm_layer=norm_layer, norm_kwargs=norm_kwargs, conv_kwargs=conv_kwargs,
            drop_connect_rate=drop_connect_rate)

        self.routing_fn = nn.Linear(in_chs, self.num_experts)

    def forward(self, x):
        residual = x

        # CondConv routing
        pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1)
        routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs))

        # Point-wise expansion
        x = self.conv_pw(x, routing_weights)
        x = self.bn1(x)
        x = self.act1(x)

        # Depth-wise convolution
        x = self.conv_dw(x, routing_weights)
        x = self.bn2(x)
        x = self.act2(x)

        # Squeeze-and-excitation
        x = self.se(x)

        # Point-wise linear projection
        x = self.conv_pwl(x, routing_weights)
        x = self.bn3(x)

        if self.has_residual:
            if self.drop_connect_rate > 0.:
                x = drop_connect(x, self.training, self.drop_connect_rate)
            x += residual
        return x


class EdgeResidual(nn.Module):
    """ EdgeTPU Residual block with expansion convolution followed by pointwise-linear w/ stride"""

    def __init__(self, in_chs, out_chs, exp_kernel_size=3, exp_ratio=1.0, fake_in_chs=0,
                 stride=1, pad_type='', act_layer=nn.ReLU, noskip=False, pw_kernel_size=1,
                 se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_connect_rate=0.):
        super(EdgeResidual, self).__init__()
        norm_kwargs = norm_kwargs or {}
        mid_chs = make_divisible(fake_in_chs * exp_ratio) if fake_in_chs > 0 else make_divisible(in_chs * exp_ratio)
        self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
        self.drop_connect_rate = drop_connect_rate

        # Expansion convolution
        self.conv_exp = select_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type)
        self.bn1 = norm_layer(mid_chs, **norm_kwargs)
        self.act1 = act_layer(inplace=True)

        # Squeeze-and-excitation
        if se_ratio is not None and se_ratio > 0.:
            se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
            self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs)
        else:
            self.se = nn.Identity()

        # Point-wise linear projection
        self.conv_pwl = select_conv2d(mid_chs, out_chs, pw_kernel_size, stride=stride, padding=pad_type)
        self.bn2 = nn.BatchNorm2d(out_chs, **norm_kwargs)

    def forward(self, x):
        residual = x

        # Expansion convolution
        x = self.conv_exp(x)
        x = self.bn1(x)
        x = self.act1(x)

        # Squeeze-and-excitation
        x = self.se(x)

        # Point-wise linear projection
        x = self.conv_pwl(x)
        x = self.bn2(x)

        if self.has_residual:
            if self.drop_connect_rate > 0.:
                x = drop_connect(x, self.training, self.drop_connect_rate)
            x += residual

        return x


class EfficientNetBuilder:
    """ Build Trunk Blocks for Efficient/Mobile Networks

    This ended up being somewhat of a cross between
    https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py
    and
    https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_builder.py

    """

    def __init__(self, channel_multiplier=1.0, channel_divisor=8, channel_min=None,
                 pad_type='', act_layer=None, se_kwargs=None,
                 norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_connect_rate=0.):
        self.channel_multiplier = channel_multiplier
        self.channel_divisor = channel_divisor
        self.channel_min = channel_min
        self.pad_type = pad_type
        self.act_layer = act_layer
        self.se_kwargs = se_kwargs
        self.norm_layer = norm_layer
        self.norm_kwargs = norm_kwargs
        self.drop_connect_rate = drop_connect_rate

        # updated during build
        self.in_chs = None
        self.block_idx = 0
        self.block_count = 0

    def _round_channels(self, chs):
        return round_channels(chs, self.channel_multiplier, self.channel_divisor, self.channel_min)

    def _make_block(self, ba):
        bt = ba.pop('block_type')
        ba['in_chs'] = self.in_chs
        ba['out_chs'] = self._round_channels(ba['out_chs'])
        if 'fake_in_chs' in ba and ba['fake_in_chs']:
            # FIXME this is a hack to work around mismatch in origin impl input filters for EdgeTPU
            ba['fake_in_chs'] = self._round_channels(ba['fake_in_chs'])
        ba['norm_layer'] = self.norm_layer
        ba['norm_kwargs'] = self.norm_kwargs
        ba['pad_type'] = self.pad_type
        # block act fn overrides the model default
        ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer
        assert ba['act_layer'] is not None
        if bt == 'ir':
            ba['drop_connect_rate'] = self.drop_connect_rate * self.block_idx / self.block_count
            ba['se_kwargs'] = self.se_kwargs
            if ba.get('num_experts', 0) > 0:
                block = CondConvResidual(**ba)
            else:
                block = InvertedResidual(**ba)
        elif bt == 'ds' or bt == 'dsa':
            ba['drop_connect_rate'] = self.drop_connect_rate * self.block_idx / self.block_count
            ba['se_kwargs'] = self.se_kwargs
            block = DepthwiseSeparableConv(**ba)
        elif bt == 'er':
            ba['drop_connect_rate'] = self.drop_connect_rate * self.block_idx / self.block_count
            ba['se_kwargs'] = self.se_kwargs
            block = EdgeResidual(**ba)
        elif bt == 'cn':
            block = ConvBnAct(**ba)
        else:
            assert False, 'Uknkown block type (%s) while building model.' % bt
        self.in_chs = ba['out_chs']  # update in_chs for arg of next block
        return block

    def _make_stack(self, stack_args):
        blocks = []
        # each stack (stage) contains a list of block arguments
        for i, ba in enumerate(stack_args):
            if i >= 1:
                # only the first block in any stack can have a stride > 1
                ba['stride'] = 1
            block = self._make_block(ba)
            blocks.append(block)
            self.block_idx += 1  # incr global idx (across all stacks)
        return nn.Sequential(*blocks)

    def __call__(self, in_chs, block_args):
        """ Build the blocks
        Args:
            in_chs: Number of input-channels passed to first block
            block_args: A list of lists, outer list defines stages, inner
                list contains strings defining block configuration(s)
        Return:
             List of block stacks (each stack wrapped in nn.Sequential)
        """
        self.in_chs = in_chs
        self.block_count = sum([len(x) for x in block_args])
        self.block_idx = 0
        blocks = []
        # outer list of block_args defines the stacks ('stages' by some conventions)
        for stack_idx, stack in enumerate(block_args):
            assert isinstance(stack, list)
            stack = self._make_stack(stack)
            blocks.append(stack)
        return blocks


def _parse_ksize(ss):
    if ss.isdigit():
        return int(ss)
    else:
        return [int(k) for k in ss.split('.')]


def _decode_block_str(block_str):
    """ Decode block definition string

    Gets a list of block arg (dicts) through a string notation of arguments.
    E.g. ir_r2_k3_s2_e1_i32_o16_se0.25_noskip

    All args can exist in any order with the exception of the leading string which
    is assumed to indicate the block type.

    leading string - block type (
      ir = InvertedResidual, ds = DepthwiseSep, dsa = DeptwhiseSep with pw act, cn = ConvBnAct)
    r - number of repeat blocks,
    k - kernel size,
    s - strides (1-9),
    e - expansion ratio,
    c - output channels,
    se - squeeze/excitation ratio
    n - activation fn ('re', 'r6', 'hs', or 'sw')
    Args:
        block_str: a string representation of block arguments.
    Returns:
        A list of block args (dicts)
    Raises:
        ValueError: if the string def not properly specified (TODO)
    """
    assert isinstance(block_str, str)
    ops = block_str.split('_')
    block_type = ops[0]  # take the block type off the front
    ops = ops[1:]
    options = {}
    noskip = False
    for op in ops:
        # string options being checked on individual basis, combine if they grow
        if op == 'noskip':
            noskip = True
        elif op.startswith('n'):
            # activation fn
            key = op[0]
            v = op[1:]
            if v == 're':
                value = get_act_layer('relu')
            elif v == 'r6':
                value = get_act_layer('relu6')
            elif v == 'hs':
                value = get_act_layer('hard_swish')
            elif v == 'sw':
                value = get_act_layer('swish')
            else:
                continue
            options[key] = value
        else:
            # all numeric options
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

    # if act_layer is None, the model default (passed to model init) will be used
    act_layer = options['n'] if 'n' in options else None
    exp_kernel_size = _parse_ksize(options['a']) if 'a' in options else 1
    pw_kernel_size = _parse_ksize(options['p']) if 'p' in options else 1
    fake_in_chs = int(options['fc']) if 'fc' in options else 0  # FIXME hack to deal with in_chs issue in TPU def

    num_repeat = int(options['r'])
    # each type of block has different valid arguments, fill accordingly
    if block_type == 'ir':
        block_args = dict(
            block_type=block_type,
            dw_kernel_size=_parse_ksize(options['k']),
            exp_kernel_size=exp_kernel_size,
            pw_kernel_size=pw_kernel_size,
            out_chs=int(options['c']),
            exp_ratio=float(options['e']),
            se_ratio=float(options['se']) if 'se' in options else None,
            stride=int(options['s']),
            act_layer=act_layer,
            noskip=noskip,
        )
        if 'cc' in options:
            block_args['num_experts'] = int(options['cc'])
    elif block_type == 'ds' or block_type == 'dsa':
        block_args = dict(
            block_type=block_type,
            dw_kernel_size=_parse_ksize(options['k']),
            pw_kernel_size=pw_kernel_size,
            out_chs=int(options['c']),
            se_ratio=float(options['se']) if 'se' in options else None,
            stride=int(options['s']),
            act_layer=act_layer,
            pw_act=block_type == 'dsa',
            noskip=block_type == 'dsa' or noskip,
        )
    elif block_type == 'er':
        block_args = dict(
            block_type=block_type,
            exp_kernel_size=_parse_ksize(options['k']),
            pw_kernel_size=pw_kernel_size,
            out_chs=int(options['c']),
            exp_ratio=float(options['e']),
            fake_in_chs=fake_in_chs,
            se_ratio=float(options['se']) if 'se' in options else None,
            stride=int(options['s']),
            act_layer=act_layer,
            noskip=noskip,
        )
    elif block_type == 'cn':
        block_args = dict(
            block_type=block_type,
            kernel_size=int(options['k']),
            out_chs=int(options['c']),
            stride=int(options['s']),
            act_layer=act_layer,
        )
    else:
        assert False, 'Unknown block type (%s)' % block_type

    return block_args, num_repeat


def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='ceil'):
    """ Per-stage depth scaling
    Scales the block repeats in each stage. This depth scaling impl maintains
    compatibility with the EfficientNet scaling method, while allowing sensible
    scaling for other models that may have multiple block arg definitions in each stage.
    """

    # We scale the total repeat count for each stage, there may be multiple
    # block arg defs per stage so we need to sum.
    num_repeat = sum(repeats)
    if depth_trunc == 'round':
        # Truncating to int by rounding allows stages with few repeats to remain
        # proportionally smaller for longer. This is a good choice when stage definitions
        # include single repeat stages that we'd prefer to keep that way as long as possible
        num_repeat_scaled = max(1, round(num_repeat * depth_multiplier))
    else:
        # The default for EfficientNet truncates repeats to int via 'ceil'.
        # Any multiplier > 1.0 will result in an increased depth for every stage.
        num_repeat_scaled = int(math.ceil(num_repeat * depth_multiplier))

    # Proportionally distribute repeat count scaling to each block definition in the stage.
    # Allocation is done in reverse as it results in the first block being less likely to be scaled.
    # The first block makes less sense to repeat in most of the arch definitions.
    repeats_scaled = []
    for r in repeats[::-1]:
        rs = max(1, round((r / num_repeat * num_repeat_scaled)))
        repeats_scaled.append(rs)
        num_repeat -= r
        num_repeat_scaled -= rs
    repeats_scaled = repeats_scaled[::-1]

    # Apply the calculated scaling to each block arg in the stage
    sa_scaled = []
    for ba, rep in zip(stack_args, repeats_scaled):
        sa_scaled.extend([deepcopy(ba) for _ in range(rep)])
    return sa_scaled


def decode_arch_def(arch_def, depth_multiplier=1.0, depth_trunc='ceil', experts_multiplier=1, fix_first_last=False):
    arch_args = []
    for stack_idx, block_strings in enumerate(arch_def):
        assert isinstance(block_strings, list)
        stack_args = []
        repeats = []
        for block_str in block_strings:
            assert isinstance(block_str, str)
            ba, rep = _decode_block_str(block_str)
            if ba.get('num_experts', 0) > 0 and experts_multiplier > 1:
                ba['num_experts'] *= experts_multiplier
            stack_args.append(ba)
            repeats.append(rep)
        if fix_first_last and (stack_idx == 0 or stack_idx == len(arch_def) - 1):
            arch_args.append(_scale_stage_depth(stack_args, repeats, 1.0, depth_trunc))
        else:
            arch_args.append(_scale_stage_depth(stack_args, repeats, depth_multiplier, depth_trunc))
    return arch_args


def initialize_weight_goog(m, n='', fix_group_fanout=True):
    # weight init as per Tensorflow Official impl
    # https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_model.py
    if isinstance(m, CondConv2d):
        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        if fix_group_fanout:
            fan_out //= m.groups
        init_weight_fn = get_condconv_initializer(
            lambda w: w.data.normal_(0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape)
        init_weight_fn(m.weight)
        if m.bias is not None:
            m.bias.data.zero_()
    elif isinstance(m, nn.Conv2d):
        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        if fix_group_fanout:
            fan_out //= m.groups
        m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
        if m.bias is not None:
            m.bias.data.zero_()
    elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1.0)
        m.bias.data.zero_()
    elif isinstance(m, nn.Linear):
        fan_out = m.weight.size(0)  # fan-out
        fan_in = 0
        if 'routing_fn' in n:
            fan_in = m.weight.size(1)
        init_range = 1.0 / math.sqrt(fan_in + fan_out)
        m.weight.data.uniform_(-init_range, init_range)
        m.bias.data.zero_()


def initialize_weight_default(m, n=''):
    if isinstance(m, CondConv2d):
        init_fn = get_condconv_initializer(partial(
            nn.init.kaiming_normal_, mode='fan_out', nonlinearity='relu'), m.num_experts, m.weight_shape)
        init_fn(m.weight)
    elif isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
    elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1.0)
        m.bias.data.zero_()
    elif isinstance(m, nn.Linear):
        nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='linear')